Light-Activated Assembly of Connexon Nanopores in Synthetic Cells

化学 纳米孔 纳米技术 连接子 生物物理学 脂质双层 细胞质 脂质体 细胞内 生物化学 材料科学 缝隙连接 生物 连接蛋白
作者
Ahmed Z. Sihorwala,Alexander Lin,Jeanne C. Stachowiak,Brian Belardi
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (6): 3561-3568 被引量:5
标识
DOI:10.1021/jacs.2c12491
摘要

During developmental processes and wound healing, activation of living cells occurs with spatiotemporal precision and leads to rapid release of soluble molecular signals, allowing communication and coordination between neighbors. Nonliving systems capable of similar responsive release hold great promise for information transfer in materials and site-specific drug delivery. One nonliving system that offers a tunable platform for programming release is synthetic cells. Encased in a lipid bilayer structure, synthetic cells can be outfitted with molecular conduits that span the bilayer and lead to material exchange. While previous work expressing membrane pore proteins in synthetic cells demonstrated content exchange, user-defined control over release has remained elusive. In mammalian cells, connexon nanopore structures drive content release and have garnered significant interest since they can direct material exchange through intercellular contacts. Here, we focus on connexon nanopores and present activated release of material from synthetic cells in a light-sensitive fashion. To do this, we re-engineer connexon nanopores to assemble after post-translational processing by a protease. By encapsulating proteases in light-sensitive liposomes, we show that assembly of nanopores can be triggered by illumination, resulting in rapid release of molecules encapsulated within synthetic cells. Controlling connexon nanopore activity provides an opportunity for initiating communication with extracellular signals and for transferring molecular agents to the cytoplasm of living cells in a rapid, light-guided manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yrh发布了新的文献求助10
刚刚
2秒前
浅斟低唱发布了新的文献求助100
4秒前
jify发布了新的文献求助10
7秒前
8秒前
Yucorn完成签到 ,获得积分10
9秒前
11秒前
11秒前
12秒前
zuoshoubo完成签到,获得积分10
16秒前
劲秉应助浅斟低唱采纳,获得10
16秒前
疯狂的语兰完成签到,获得积分10
17秒前
18秒前
19秒前
科研通AI5应助blenx采纳,获得10
19秒前
msd2phd完成签到,获得积分10
20秒前
FBQZDJG2122完成签到,获得积分10
21秒前
23秒前
轻松完成签到,获得积分10
28秒前
28秒前
29秒前
康康完成签到,获得积分10
30秒前
31秒前
哭泣灯泡应助晨晨CC采纳,获得10
31秒前
32秒前
虞雪儿儿发布了新的文献求助10
33秒前
34秒前
34秒前
35秒前
阿肯李发布了新的文献求助10
35秒前
37秒前
wjfan完成签到,获得积分10
39秒前
enterdawn发布了新的文献求助10
39秒前
40秒前
43秒前
善学以致用应助全球采纳,获得10
43秒前
小七完成签到,获得积分10
44秒前
善学以致用应助Aurora采纳,获得10
44秒前
爆米花应助淡然的宛菡采纳,获得30
45秒前
45秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673288
求助须知:如何正确求助?哪些是违规求助? 3229110
关于积分的说明 9783896
捐赠科研通 2939628
什么是DOI,文献DOI怎么找? 1611172
邀请新用户注册赠送积分活动 760809
科研通“疑难数据库(出版商)”最低求助积分说明 736290