Integration of target, suspect, and nontarget screening with risk modeling for per- and polyfluoroalkyl substances prioritization in surface waters

全氟辛酸 优先次序 环境科学 环境化学 环境修复 地表水 风险评估 轨道轨道 环境监测 污染
作者
Jingrun Hu,Yitao Lyu,Huan Chen,Leilei Cai,Jie Li,Xiaoqiang Cao,Weiling Sun
出处
期刊:Water Research [Elsevier]
卷期号:233: 119735-119735 被引量:67
标识
DOI:10.1016/j.watres.2023.119735
摘要

Though thousands of per- and polyfluoroalkyl substances (PFAS) have been on the global market, most research focused on only a small fraction, potentially resulting in underestimated environmental risks. Here, we used complementary target, suspect, and nontarget screening for quantifying and identifying the target and nontarget PFAS, respectively, and developed a risk model considering their specific properties to prioritize the PFAS in surface waters. Thirty-three PFAS were identified in surface water in the Chaobai river, Beijing. The suspect and nontarget screening by Orbitrap displayed a sensitivity of > 77%, indicating its good performance in identifying the PFAS in samples. We used triple quadrupole (QqQ) under multiple-reaction monitoring for quantifying PFAS with authentic standards due to its potentially high sensitivity. To quantify the nontarget PFAS without authentic standards, we trained a random forest regression model which presented the differences up to only 2.7 times between measured and predicted response factors (RFs). The maximum/minimum RF in each PFAS class was as high as 1.2-10.0 in Orbitrap and 1.7-22.3 in QqQ. A risk-based prioritization approach was developed to rank the identified PFAS, and four PFAS (i.e., perfluorooctanoic acid, hydrogenated perfluorohexanoic acid, bistriflimide, 6:2 fluorotelomer carboxylic acid) were flagged with high priority (risk index > 0.1) for remediation and management. Our study highlighted the importance of a quantification strategy during environmental scrutiny of PFAS, especially for nontarget PFAS without standards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小发布了新的文献求助10
1秒前
大模型应助CA采纳,获得10
2秒前
不在忧伤发布了新的文献求助10
2秒前
小蘑菇应助hwezhu采纳,获得10
2秒前
蔺景轩发布了新的文献求助10
2秒前
jing发布了新的文献求助10
3秒前
3秒前
桐桐应助YwYzzZ采纳,获得10
3秒前
清爽觅双发布了新的文献求助10
3秒前
3秒前
雨无意发布了新的文献求助10
4秒前
兜兜完成签到,获得积分10
4秒前
yourenpkma123发布了新的文献求助10
4秒前
甜甜秋寒发布了新的文献求助10
4秒前
sqw完成签到,获得积分10
4秒前
5秒前
5秒前
Orange应助易酰水烊酸采纳,获得10
5秒前
6秒前
6秒前
超级翠应助xin采纳,获得10
6秒前
疯狂硕士完成签到,获得积分20
6秒前
7秒前
smile应助年华采纳,获得20
7秒前
7秒前
7秒前
7秒前
xue发布了新的文献求助10
8秒前
菜就多练完成签到,获得积分10
8秒前
8秒前
轨迹应助小熊采纳,获得30
8秒前
科研通AI6应助Jks采纳,获得10
8秒前
9秒前
LZ的脑子发布了新的文献求助10
9秒前
Aries完成签到,获得积分10
9秒前
Stella应助fnuew采纳,获得10
9秒前
向向发布了新的文献求助10
10秒前
桐桐应助wrk采纳,获得10
10秒前
闻言完成签到,获得积分10
10秒前
杰瑞院士完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608584
求助须知:如何正确求助?哪些是违规求助? 4693308
关于积分的说明 14877618
捐赠科研通 4718061
什么是DOI,文献DOI怎么找? 2544332
邀请新用户注册赠送积分活动 1509463
关于科研通互助平台的介绍 1472844