CXCL9型
CXCR3型
下调和上调
纤维化
CXCL10型
趋化因子
炎症
免疫学
医学
病理
趋化因子受体
生物
细胞生物学
癌症研究
遗传学
基因
作者
Jillian M. Richmond,Dhrumil Patel,Tomoya Watanabe,Henry W. Chen,Viktor Martyanov,Giffin Werner,Madhuri Garg,Nazgol‐Sadat Haddadi,Maggi Ahmed Refat,Bassel H. Mahmoud,Lance D. Wong,Karen Dresser,April Deng,Jane L. Zhu,William McAlpine,Gregory A. Hosler,Carol Feghali‐Bostwick,Michael L. Whitfield,John E. Harris,Kathryn S. Torok,Heidi Jacobe
标识
DOI:10.1016/j.jid.2022.11.025
摘要
Morphea is characterized by initial inflammation followed by fibrosis of the skin and soft tissue. Despite its substantial morbidity, the pathogenesis of morphea is poorly studied. Previous work showed that CXCR3 ligands CXCL9 and CXCL10 are highly upregulated in the sera and lesional skin of patients with morphea. We found that an early inflammatory subcutaneous bleomycin mouse model of dermal fibrosis mirrors the clinical, histological, and immune dysregulation observed in human morphea. We used this model to examine the role of the CXCR3 chemokine axis in the pathogenesis of cutaneous fibrosis. Using the REX3 (Reporting the Expression of CXCR3 ligands) mice, we characterized which cells produce CXCR3 ligands over time. We found that fibroblasts contribute the bulk of CXCL9-RFP and CXCL10-BFP by percentage, whereas macrophages produce high amounts on a per-cell basis. To determine whether these chemokines are mechanistically involved in pathogenesis, we treated Cxcl9-, Cxcl10-, or Cxcr3-deficient mice with bleomycin and found that fibrosis is dependent on CXCL9 and CXCR3. Addition of recombinant CXCL9 but not CXCL10 to cultured mouse fibroblasts induced Col1a1 mRNA expression, indicating that the chemokine itself contributes to fibrosis. Taken together, our studies provide evidence that CXCL9 and its receptor CXCR3 are functionally required for inflammatory fibrosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI