CBCT radiomics features combine machine learning to diagnose cystic lesions in the jaw

医学 接收机工作特性 队列 逻辑回归 回顾性队列研究 牙源性的 无线电技术 休息(音乐) 放射科 曲线下面积 外科 内科学 病理
作者
Xiaoyan Sha,Chao Wang,Jiayu Sun,Senrong Qi,Xiaohong Yuan,Hui Zhang,Jigang Yang
出处
期刊:Dentomaxillofacial Radiology [Oxford University Press]
标识
DOI:10.1093/dmfr/twaf024
摘要

Abstract Objective The aim of this study was to develop a radiomics model based on cone beam computed tomography (CBCT) to differentiate odontogenic cysts (OC), odontogenic keratocysts (OKC) and ameloblastomas (AB). Methods In this retrospective study, CBCT images were collected from 300 patients diagnosed with OC, OKC and AB who underwent histopathological diagnosis. These patients were randomly divided into training (70%) and test (30%) cohorts. Radiomics features were extracted from the images, and the optimal features were incorporated into Random Forest model, Support Vector Classifier (SVC) model, Logistic Regression model and a soft VotingClassifier based on the above three algorithms. The performance of the models was evaluated using a receiver operating characteristic (ROC) curve and the area under the curve (AUC). The optimal model among these was then used to establish the final radiomics prediction model, whose performance was evaluated using the sensitivity, accuracy, precision, specificity and F1 score in both the training cohort and the test cohort. Results The six optimal radiomics features were incorporated into a soft VotingClassifier. Its performance was the best overall. The AUC values of the One-vs-Rest (OvR) multiclassification strategy were AB-vs-Rest 0.963; OKC-vs-Rest 0.928; OC-vs-Rest 0.919 in the training cohort and AB-vs-Rest 0.814; OKC-vs-Rest 0.781; OC-vs-Rest 0.849 in the test cohort. The overall accuracy of the model in the training cohort was 0.757, and in the test cohort was 0.711. Conclusions The VotingClassifier model demonstrated the ability of the CBCT radiomics to distinguish the multiple types of diseases (OC, OKC and AB) in the jaw and may have the potential to diagnose accurately under non-invasive conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
逆时针完成签到,获得积分10
1秒前
时聿发布了新的文献求助10
1秒前
gu发布了新的文献求助10
1秒前
2秒前
敏感的天空完成签到,获得积分10
3秒前
斯文败类应助sam采纳,获得10
3秒前
rputation完成签到 ,获得积分10
5秒前
在水一方应助是玥玥啊采纳,获得10
6秒前
科研小虫完成签到,获得积分10
6秒前
Okpooko发布了新的文献求助10
8秒前
15发布了新的文献求助10
8秒前
8秒前
aimee完成签到 ,获得积分20
9秒前
在水一方应助科研小虫采纳,获得10
10秒前
pluto应助任性的元冬采纳,获得10
11秒前
14秒前
sam发布了新的文献求助10
14秒前
Shiku完成签到,获得积分10
16秒前
17秒前
哈哈发布了新的文献求助10
17秒前
CipherSage应助Frank采纳,获得10
19秒前
小透明应助天天开心采纳,获得30
19秒前
sam完成签到,获得积分20
19秒前
科研通AI5应助小树采纳,获得10
21秒前
21秒前
22秒前
1774995274发布了新的文献求助10
22秒前
奇异物质发布了新的文献求助10
22秒前
小蘑菇应助睡不醒的喵采纳,获得10
22秒前
skier发布了新的文献求助10
27秒前
Ir发布了新的文献求助10
27秒前
养乐多完成签到 ,获得积分10
27秒前
zzzzzz发布了新的文献求助10
27秒前
TingtingGZ发布了新的文献求助20
28秒前
28秒前
科研通AI5应助dfghjkl采纳,获得10
29秒前
30秒前
gu发布了新的文献求助10
32秒前
学术野猪完成签到,获得积分10
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673662
求助须知:如何正确求助?哪些是违规求助? 3229164
关于积分的说明 9784494
捐赠科研通 2939740
什么是DOI,文献DOI怎么找? 1611281
邀请新用户注册赠送积分活动 760896
科研通“疑难数据库(出版商)”最低求助积分说明 736326