Multicenter Development and Validation of a Multimodal Deep Learning Model to Predict Moderate to Severe Acute Kidney Injury

医学 急性肾损伤 接收机工作特性 队列 阶段(地层学) 急诊医学 重症监护室 肾脏疾病 生命体征 重症监护医学 内科学 外科 古生物学 生物
作者
Jay L. Koyner,Jennie Martin,Kyle A. Carey,John Caskey,Dana P. Edelson,Anoop Mayampurath,Dmitriy Dligach,Majid Afshar,Matthew M. Churpek
出处
期刊:Clinical Journal of The American Society of Nephrology [Lippincott Williams & Wilkins]
标识
DOI:10.2215/cjn.0000000695
摘要

Background: Prior models for the early identification of acute kidney injury (AKI) have utilized structured data (e.g., vital signs and laboratory values). We aimed to develop and validate a deep learning model to predict moderate to severe AKI by combining structured data and information from unstructured notes. Methods: Adults (≥18 years) admitted to the University of Wisconsin (2009-20) and the University of Chicago Medicine (2016-22) were eligible for inclusion. Patients were excluded if they had no documented serum creatinine (SCr), end-stage kidney disease, an admission SCr≥3.0mg/dL, developed ≥Stage 2 AKI before reaching the wards or intensive care unit (ICU), or required dialysis (KRT) within the first 48 hours. Text from unstructured notes was mapped to standardized Concept Unique Identifiers (CUIs) to create predictor variables, and structured data variables were also included. An intermediate fusion deep learning recurrent neural network architecture was used to predict ≥Stage 2 AKI within the next 48 hours. This multimodal model was developed in the first 80% of the data and temporally validated in the next 20%. Results: There were 339,998 admissions in the derivation cohort and 84,581 in the validation cohort, with 12,748 (3%) developing ≥Stage 2 AKI. Patients with ≥Stage 2 AKI were older, more likely to be male, had higher baseline SCr, and were more commonly in the ICU (p<0.001 for all). The multimodal model outperformed a model based only on structured data for all outcomes, with an area under the receiver operating characteristic curve (95% CI) of 0.88(0.88-0.88) for predicting ≥Stage 2 AKI and 0.93(0.93-0.94) for receiving KRT. The area under the precision-recall-curve for ≥Stage 2 AKI was 0.20. Results were similar during external validation. Conclusions: We developed and validated a multimodal deep learning model using structured and unstructured data that predicts the development of severe AKI across the hospital stay for earlier intervention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助jiang采纳,获得10
1秒前
翟拂发布了新的文献求助30
1秒前
酷波er应助小菜鸟采纳,获得10
2秒前
3秒前
心系天下发布了新的文献求助10
3秒前
粽子发布了新的文献求助10
3秒前
Apocalypse_zjz完成签到,获得积分10
3秒前
MADKAI发布了新的文献求助10
3秒前
加贝峥发布了新的文献求助10
3秒前
lsx完成签到,获得积分10
4秒前
小杨发布了新的文献求助10
4秒前
思源应助ruanyh采纳,获得10
4秒前
wei_ahpu完成签到,获得积分10
5秒前
5秒前
爆米花应助小强采纳,获得10
6秒前
6秒前
呆呆的猕猴桃完成签到 ,获得积分10
7秒前
汉堡包应助虚心柠檬采纳,获得10
8秒前
8秒前
神奇驳回了iNk应助
8秒前
Magic1987发布了新的文献求助10
9秒前
taeblue13关注了科研通微信公众号
9秒前
大维C完成签到,获得积分10
9秒前
9秒前
9秒前
aiw完成签到,获得积分10
10秒前
Akim应助眼睛大的剑心采纳,获得10
10秒前
zhen完成签到,获得积分10
11秒前
乐乐应助刘佳佳采纳,获得10
11秒前
ziyege完成签到,获得积分10
11秒前
12秒前
hyominhsu发布了新的文献求助10
13秒前
13秒前
Quitter完成签到,获得积分10
13秒前
Psy_chi发布了新的文献求助30
14秒前
快快快完成签到,获得积分10
14秒前
Hopelife完成签到,获得积分10
14秒前
renlangfen发布了新的文献求助10
15秒前
丘比特应助啾啾咪咪采纳,获得10
15秒前
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746550
求助须知:如何正确求助?哪些是违规求助? 3289414
关于积分的说明 10064441
捐赠科研通 3005751
什么是DOI,文献DOI怎么找? 1650393
邀请新用户注册赠送积分活动 785863
科研通“疑难数据库(出版商)”最低求助积分说明 751335