The Application of Large Language Models for Radiologic Decision Making

子专业 介绍(产科) 医学 背景(考古学) 乳房成像 医学物理学 放射科 物理疗法 家庭医学 乳腺摄影术 内科学 古生物学 癌症 乳腺癌 生物
作者
Hossam A. Zaki,Andrew Aoun,Saminah Munshi,Hazem Abdel-Megid,Lleayem Nazario-Johnson,Sun Ho Ahn
出处
期刊:Journal of The American College of Radiology [Elsevier]
卷期号:21 (7): 1072-1078 被引量:7
标识
DOI:10.1016/j.jacr.2024.01.007
摘要

Background and Purpose Large Language Models (LLMs) have seen explosive growth, but their potential role in medical applications remains underexplored. Our study investigates the capability of LLMs to predict the most appropriate imaging study for specific clinical presentations in various subspecialty areas in radiology. Methods and Materials ChatGPT (GPT-4) by Open AI and Glass AI by Glass Health were tested on 1075 clinical scenarios from 11 ACR expert panels to determine the most appropriate imaging study, benchmarked against the ACR Appropriateness Criteria. Two responses per clinical presentation were generated and averaged for the final clinical presentation score. Clinical presentation scores for each topic area were averaged as its final score. The average of the topic scores within a panel determined the final score of each panel. LLM responses were on a scale of 0 to 3. Partial scores were given for non-specific answers. Pearson correlation coefficient (R-value) was calculated for each panel to determine a context-specific performance. Results Glass AI scored significantly higher than ChatGPT (2.32 +/- 0.67 vs 2.08 +/- 0.74, p=0.002). Both LLMs performed the best in the Polytrauma, Breast, and Vascular panels, and performed the worst in the Neurologic, Musculoskeletal, and Cardiac panels. Glass AI outperformed ChatGPT in 10/11 panels, except OB/GYN. Maximum agreement was in the Pediatrics, Neurologic, and Thoracic panels, while the most disagreement occurred in the Vascular, Breast, and Urologic panels. Conclusion LLMs can be used to predict imaging studies, with GlassAI's superior performance indicating the benefits of extra medical-text training. This supports the potential of LLMs in radiologic decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xulin完成签到,获得积分10
1秒前
2秒前
3秒前
V入门完成签到,获得积分10
5秒前
6秒前
深情安青应助平淡夏云采纳,获得10
6秒前
6秒前
雷雨泽石完成签到,获得积分10
7秒前
天真如松发布了新的文献求助10
7秒前
lll发布了新的文献求助10
8秒前
8秒前
8秒前
sam完成签到,获得积分10
9秒前
mhl11应助知性的觅露采纳,获得50
11秒前
duduaya发布了新的文献求助10
11秒前
北执完成签到,获得积分10
12秒前
wdw2501发布了新的文献求助10
14秒前
千寒完成签到,获得积分10
14秒前
雷雨泽石发布了新的文献求助10
14秒前
15秒前
20秒前
Anan应助楠楠采纳,获得20
21秒前
夜之枫发布了新的文献求助10
21秒前
善学以致用应助轻松向彤采纳,获得10
23秒前
夏惋清完成签到 ,获得积分0
24秒前
ChenSSS发布了新的文献求助10
24秒前
学谦完成签到,获得积分10
24秒前
pluto应助犇骉采纳,获得50
28秒前
31秒前
allenise完成签到,获得积分10
33秒前
33秒前
37秒前
baby709466完成签到,获得积分0
37秒前
qiqi完成签到 ,获得积分10
38秒前
li发布了新的文献求助10
40秒前
40秒前
自由的惜文完成签到,获得积分10
40秒前
科研通AI2S应助楠楠2001采纳,获得10
41秒前
42秒前
月落宛夏发布了新的文献求助10
43秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340955
求助须知:如何正确求助?哪些是违规求助? 2968764
关于积分的说明 8634886
捐赠科研通 2648259
什么是DOI,文献DOI怎么找? 1450110
科研通“疑难数据库(出版商)”最低求助积分说明 671711
邀请新用户注册赠送积分活动 660816