The Application of Large Language Models for Radiologic Decision Making

子专业 介绍(产科) 医学 背景(考古学) 乳房成像 医学物理学 放射科 物理疗法 家庭医学 乳腺摄影术 内科学 古生物学 癌症 乳腺癌 生物
作者
Hossam A. Zaki,Andrew Aoun,Saminah Munshi,Hazem Abdel-Megid,Lleayem Nazario-Johnson,Sun Ho Ahn
出处
期刊:Journal of The American College of Radiology [Elsevier BV]
卷期号:21 (7): 1072-1078 被引量:9
标识
DOI:10.1016/j.jacr.2024.01.007
摘要

Background and Purpose Large Language Models (LLMs) have seen explosive growth, but their potential role in medical applications remains underexplored. Our study investigates the capability of LLMs to predict the most appropriate imaging study for specific clinical presentations in various subspecialty areas in radiology. Methods and Materials ChatGPT (GPT-4) by Open AI and Glass AI by Glass Health were tested on 1075 clinical scenarios from 11 ACR expert panels to determine the most appropriate imaging study, benchmarked against the ACR Appropriateness Criteria. Two responses per clinical presentation were generated and averaged for the final clinical presentation score. Clinical presentation scores for each topic area were averaged as its final score. The average of the topic scores within a panel determined the final score of each panel. LLM responses were on a scale of 0 to 3. Partial scores were given for non-specific answers. Pearson correlation coefficient (R-value) was calculated for each panel to determine a context-specific performance. Results Glass AI scored significantly higher than ChatGPT (2.32 +/- 0.67 vs 2.08 +/- 0.74, p=0.002). Both LLMs performed the best in the Polytrauma, Breast, and Vascular panels, and performed the worst in the Neurologic, Musculoskeletal, and Cardiac panels. Glass AI outperformed ChatGPT in 10/11 panels, except OB/GYN. Maximum agreement was in the Pediatrics, Neurologic, and Thoracic panels, while the most disagreement occurred in the Vascular, Breast, and Urologic panels. Conclusion LLMs can be used to predict imaging studies, with GlassAI's superior performance indicating the benefits of extra medical-text training. This supports the potential of LLMs in radiologic decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助叶世玉采纳,获得10
刚刚
公西海发布了新的文献求助10
刚刚
Lyrics完成签到,获得积分10
1秒前
舒适绮发布了新的文献求助10
1秒前
青柠发布了新的文献求助10
2秒前
等等发布了新的文献求助10
2秒前
早睡早起完成签到 ,获得积分10
3秒前
DJMZ完成签到,获得积分20
3秒前
4秒前
zxlllll完成签到,获得积分20
5秒前
左彦完成签到,获得积分10
6秒前
6秒前
熊熊关注了科研通微信公众号
6秒前
7秒前
ll发布了新的文献求助10
11秒前
狂野书易完成签到,获得积分10
12秒前
13秒前
14秒前
笑笑完成签到,获得积分10
15秒前
17秒前
在水一方应助cc采纳,获得10
17秒前
ariaooo完成签到,获得积分10
17秒前
18秒前
21秒前
23秒前
迪巴拉发布了新的文献求助30
24秒前
26秒前
26秒前
念念发布了新的文献求助10
26秒前
dhu_cc完成签到,获得积分10
26秒前
一年半太久只争朝夕完成签到,获得积分10
26秒前
fd163c应助Andrea采纳,获得10
27秒前
27秒前
乐乐应助知止采纳,获得10
28秒前
积极的以亦完成签到,获得积分10
28秒前
酷波er应助飞鱼采纳,获得10
28秒前
agility完成签到,获得积分10
28秒前
29秒前
29秒前
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755395
求助须知:如何正确求助?哪些是违规求助? 3298462
关于积分的说明 10105902
捐赠科研通 3013141
什么是DOI,文献DOI怎么找? 1655012
邀请新用户注册赠送积分活动 789339
科研通“疑难数据库(出版商)”最低求助积分说明 753273