Remote Distance Binocular Vision Ranging Method Based on Improved YOLOv5

测距 极线几何 人工智能 计算机视觉 双眼视觉 计算机科学 匹配(统计) 校准 立体视觉 Blossom算法 数学 图像(数学) 电信 统计
作者
Biaobiao Wei,Jun Liu,Ao Li,Huiliang Cao,Chenguang Wang,Chong Shen,Jun Tang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (7): 11328-11341 被引量:1
标识
DOI:10.1109/jsen.2024.3359671
摘要

In the process of using binocular vision for ranging, target detection and image matching are the key to the ranging process. To address the problems of low target detection accuracy and high distance ranging error in traditional binocular ranging methods, this paper proposes an improved binocular vision ranging algorithm based on YOLOv5. First, the binocular camera is calibrated by the checkerboard calibration method, and the imaging plane of the binocular stereo vision is corrected to the ideal structure by the epipolar correction algorithm. Then, the target is detected by the improved YOLOv5 algorithm. This method uses the SimOTA label allocation strategy to further reduce the training time and computational complexity of the model, and introduces LEIOU to solve the problem of the unclear definition of the length–width ratio in the original LCIOU , further improving the speed and accuracy of convergence. Moreover, focal loss is added to compensate for the imbalanced contribution of high- and low-quality samples in the gradient. Next, using the improved multi-scale stereo matching algorithm, the speed of the matching algorithm in large images is enhanced. After the initial matching point pairs have been obtained, the quadratic surface fitting method is used to obtain the sub-pixel disparity. The depth value of the target center point is obtained by conversion from the two-dimensional pixel coordinate system to the three-dimensional space coordinate system. A ranging experiment was carried out in the range of 20-200 m. The MAE index of the ranging result of the proposed method is only 2.85 m, which verifies the effectiveness of the improved algorithm in both its theoretical and experimental aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助科研r采纳,获得10
1秒前
1秒前
1秒前
boom完成签到,获得积分20
2秒前
Akim应助啥子那采纳,获得10
2秒前
天边的云发布了新的文献求助10
2秒前
Dipsy发布了新的文献求助10
3秒前
3秒前
mc发布了新的文献求助10
3秒前
细腻代真完成签到,获得积分10
3秒前
娇气的书桃完成签到,获得积分10
4秒前
酷波er应助花椒苦啊采纳,获得10
5秒前
5秒前
高大怀梦发布了新的文献求助10
5秒前
海洋发布了新的文献求助10
5秒前
6秒前
登登完成签到,获得积分20
7秒前
du_yehui完成签到,获得积分10
7秒前
煦123完成签到,获得积分20
8秒前
Xenia发布了新的文献求助10
9秒前
willie完成签到,获得积分10
9秒前
zhangtengteng完成签到,获得积分10
9秒前
陈chen发布了新的文献求助30
10秒前
jaslek发布了新的文献求助10
10秒前
10秒前
yunyii发布了新的文献求助50
10秒前
CC完成签到,获得积分10
11秒前
铲一口美羊羊完成签到,获得积分20
13秒前
可爱的函函应助高大怀梦采纳,获得10
13秒前
13秒前
Jar完成签到,获得积分10
14秒前
14秒前
yunyii完成签到,获得积分10
15秒前
15秒前
Comrade_ZZD完成签到 ,获得积分10
15秒前
Zn0103完成签到,获得积分10
15秒前
16秒前
17秒前
suiwuya完成签到,获得积分10
17秒前
Aurora发布了新的文献求助10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148410
求助须知:如何正确求助?哪些是违规求助? 2799545
关于积分的说明 7835454
捐赠科研通 2456868
什么是DOI,文献DOI怎么找? 1307446
科研通“疑难数据库(出版商)”最低求助积分说明 628207
版权声明 601655