Compound Activity Prediction with Dose-Dependent Transcriptomic Profiles and Deep Learning

转录组 计算生物学 药物发现 基因表达谱 基因表达 化学 生物 基因 生物信息学 生物化学
作者
William J. Godinez,Vladimir Trifonov,Bin Fang,Guray Kuzu,Luying Pei,W. Armand Guiguemde,Éric Martin,Frederick J. King,Jeremy L. Jenkins,Peter Skewes-Cox
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2695-2704 被引量:2
标识
DOI:10.1021/acs.jcim.3c01855
摘要

Predicting compound activity in assays is a long-standing challenge in drug discovery. Computational models based on compound-induced gene expression signatures from a single profiling assay have shown promise toward predicting compound activity in other, seemingly unrelated, assays. Applications of such models include predicting mechanisms-of-action (MoA) for phenotypic hits, identifying off-target activities, and identifying polypharmacologies. Here, we introduce transcriptomics-to-activity transformer (TAT) models that leverage gene expression profiles observed over compound treatment at multiple concentrations to predict the compound activity in other biochemical or cellular assays. We built TAT models based on gene expression data from a RASL-seq assay to predict the activity of 2692 compounds in 262 dose–response assays. We obtained useful models for 51% of the assays, as determined through a realistic held-out set. Prospectively, we experimentally validated the activity predictions of a TAT model in a malaria inhibition assay. With a 63% hit rate, TAT successfully identified several submicromolar malaria inhibitors. Our results thus demonstrate the potential of transcriptomic responses over compound concentration and the TAT modeling framework as a cost-efficient way to identify the bioactivities of promising compounds across many assays.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
stttt完成签到,获得积分20
2秒前
5秒前
可爱的函函应助lelehanhan采纳,获得30
5秒前
聪慧念桃发布了新的文献求助10
5秒前
6秒前
stttt发布了新的文献求助10
7秒前
7秒前
Ying发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
大白菜发布了新的文献求助10
11秒前
12秒前
asdfzxcv应助陈雯采纳,获得10
12秒前
靓丽翩跹完成签到,获得积分10
13秒前
Thi发布了新的文献求助10
13秒前
14秒前
ouya完成签到,获得积分10
14秒前
15秒前
old杜发布了新的文献求助10
16秒前
鲁遥完成签到,获得积分10
17秒前
yang发布了新的文献求助10
18秒前
FashionBoy应助草木青采纳,获得10
18秒前
18秒前
聪慧念桃完成签到,获得积分10
20秒前
荆玉豪完成签到,获得积分10
21秒前
23秒前
24秒前
CodeCraft应助你好采纳,获得10
25秒前
可玩性完成签到 ,获得积分10
25秒前
CipherSage应助krito采纳,获得10
25秒前
whisper完成签到,获得积分10
27秒前
28秒前
28秒前
瑶瑶车发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
28秒前
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633567
求助须知:如何正确求助?哪些是违规求助? 4729249
关于积分的说明 14986268
捐赠科研通 4791473
什么是DOI,文献DOI怎么找? 2558931
邀请新用户注册赠送积分活动 1519330
关于科研通互助平台的介绍 1479617