Compound Activity Prediction with Dose-Dependent Transcriptomic Profiles and Deep Learning

转录组 计算生物学 药物发现 基因表达谱 基因表达 化学 生物 基因 生物信息学 生物化学
作者
William J. Godinez,Vladimir Trifonov,Bin Fang,Guray Kuzu,Luying Pei,W. Armand Guiguemde,Éric Martin,Frederick J. King,Jeremy L. Jenkins,Peter Skewes-Cox
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2695-2704 被引量:2
标识
DOI:10.1021/acs.jcim.3c01855
摘要

Predicting compound activity in assays is a long-standing challenge in drug discovery. Computational models based on compound-induced gene expression signatures from a single profiling assay have shown promise toward predicting compound activity in other, seemingly unrelated, assays. Applications of such models include predicting mechanisms-of-action (MoA) for phenotypic hits, identifying off-target activities, and identifying polypharmacologies. Here, we introduce transcriptomics-to-activity transformer (TAT) models that leverage gene expression profiles observed over compound treatment at multiple concentrations to predict the compound activity in other biochemical or cellular assays. We built TAT models based on gene expression data from a RASL-seq assay to predict the activity of 2692 compounds in 262 dose–response assays. We obtained useful models for 51% of the assays, as determined through a realistic held-out set. Prospectively, we experimentally validated the activity predictions of a TAT model in a malaria inhibition assay. With a 63% hit rate, TAT successfully identified several submicromolar malaria inhibitors. Our results thus demonstrate the potential of transcriptomic responses over compound concentration and the TAT modeling framework as a cost-efficient way to identify the bioactivities of promising compounds across many assays.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
共享精神应助坦率的香烟采纳,获得10
2秒前
2秒前
3秒前
B站萧亚轩发布了新的文献求助10
3秒前
浮游应助159采纳,获得10
4秒前
高大的羽毛完成签到,获得积分10
4秒前
冷酷的冬菱完成签到 ,获得积分10
4秒前
5秒前
纪尔蓝完成签到,获得积分20
6秒前
酷酷剑通完成签到,获得积分10
6秒前
称心的南霜完成签到 ,获得积分10
6秒前
科研通AI6应助sssshhh采纳,获得10
7秒前
7秒前
8秒前
陈玥发布了新的文献求助10
9秒前
10秒前
华冰发布了新的文献求助10
10秒前
学术女战士完成签到,获得积分10
10秒前
CCH关注了科研通微信公众号
10秒前
yang完成签到,获得积分10
11秒前
Reedy完成签到,获得积分10
11秒前
严兴明完成签到,获得积分10
12秒前
青辣椒发布了新的文献求助10
12秒前
浮游应助眯眯眼的白凝采纳,获得10
12秒前
完美世界应助B站萧亚轩采纳,获得10
13秒前
14秒前
14秒前
14秒前
宇文安寒完成签到,获得积分10
14秒前
小巧凡霜发布了新的文献求助10
15秒前
bliss完成签到,获得积分10
15秒前
g0123发布了新的文献求助10
16秒前
18秒前
19秒前
实验不可以摆烂完成签到,获得积分10
19秒前
20秒前
yezhi发布了新的文献求助10
21秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941008
求助须知:如何正确求助?哪些是违规求助? 4207071
关于积分的说明 13076503
捐赠科研通 3985864
什么是DOI,文献DOI怎么找? 2182332
邀请新用户注册赠送积分活动 1197889
关于科研通互助平台的介绍 1110237