Compound Activity Prediction with Dose-Dependent Transcriptomic Profiles and Deep Learning

转录组 计算生物学 药物发现 基因表达谱 基因表达 化学 生物 基因 生物信息学 生物化学
作者
William J. Godinez,Vladimir Trifonov,Bin Fang,Guray Kuzu,Luying Pei,W. Armand Guiguemde,Éric Martin,Frederick J. King,Jeremy L. Jenkins,Peter Skewes-Cox
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2695-2704 被引量:2
标识
DOI:10.1021/acs.jcim.3c01855
摘要

Predicting compound activity in assays is a long-standing challenge in drug discovery. Computational models based on compound-induced gene expression signatures from a single profiling assay have shown promise toward predicting compound activity in other, seemingly unrelated, assays. Applications of such models include predicting mechanisms-of-action (MoA) for phenotypic hits, identifying off-target activities, and identifying polypharmacologies. Here, we introduce transcriptomics-to-activity transformer (TAT) models that leverage gene expression profiles observed over compound treatment at multiple concentrations to predict the compound activity in other biochemical or cellular assays. We built TAT models based on gene expression data from a RASL-seq assay to predict the activity of 2692 compounds in 262 dose–response assays. We obtained useful models for 51% of the assays, as determined through a realistic held-out set. Prospectively, we experimentally validated the activity predictions of a TAT model in a malaria inhibition assay. With a 63% hit rate, TAT successfully identified several submicromolar malaria inhibitors. Our results thus demonstrate the potential of transcriptomic responses over compound concentration and the TAT modeling framework as a cost-efficient way to identify the bioactivities of promising compounds across many assays.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YG完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
2秒前
2秒前
苏航发布了新的文献求助10
6秒前
gh完成签到,获得积分10
7秒前
JULY发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
11秒前
yyt发布了新的文献求助10
13秒前
13秒前
TJW完成签到 ,获得积分10
14秒前
orixero应助wnan_07采纳,获得10
14秒前
Steven发布了新的文献求助10
15秒前
loulan完成签到,获得积分10
15秒前
吴兰田完成签到,获得积分10
15秒前
汉堡包应助Clarence采纳,获得10
17秒前
PsyQin完成签到,获得积分10
19秒前
19秒前
19秒前
Owen应助D_D采纳,获得10
20秒前
cqsjy完成签到,获得积分10
20秒前
老实易蓉发布了新的文献求助10
21秒前
彭于晏完成签到,获得积分10
22秒前
jim完成签到 ,获得积分10
23秒前
阔达苡发布了新的文献求助10
23秒前
24秒前
Trueman发布了新的文献求助10
25秒前
25秒前
Clarence完成签到,获得积分20
26秒前
27秒前
123发布了新的文献求助10
28秒前
许哲完成签到,获得积分10
28秒前
29秒前
29秒前
Clarence发布了新的文献求助10
31秒前
mmssdd完成签到,获得积分10
31秒前
学术芽完成签到,获得积分10
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961020
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134825
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790305
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150