The Le Chatelier's principle enables closed loop regenerating ternary cathode materials for spent lithium-ion batteries

材料科学 三元运算 锂(药物) 阴极 离子 循环(图论) 闭环 电气工程 工程类 物理 计算机科学 控制工程 医学 数学 量子力学 组合数学 程序设计语言 内分泌学
作者
Miaomiao Zhou,Ji Shen,Yang Duan,Yinze Zuo,Zhiwei Xing,Ruiping Liu
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:67: 103250-103250 被引量:9
标识
DOI:10.1016/j.ensm.2024.103250
摘要

The surging number of spent lithium-ion batteries (LIBs) has created great challenges to the ecological environment and lithium resources, and how to achieve high-value recycling of spent LIBs is an effective route to address the current challenges. In this paper, based on Le Chatelier's principle, we propose a strategy for efficient and green closed-loop recycling and utilization of spent NCM523 without alkali solution using Le Chatelier's principle. Citric acid as leaching agent, and oxalic acid with larger pKa as precipitant is susceptible to release H+ in the carboxylic acid group and combine with citrate ion after adding to the leaching solution. The compound decomposition reaction occurs in the system to obtain oxalic acid precursor and citric acid simultaneously, realising the closed-loop utilisation of leaching solution recycling. The regeneration of LiNi0.5Mn0.3Co0.2O2 (NCM523) was successfully achieved by combining the salt solution precipitation and roasting processes, resulting in a leaching rate of more than 99 % for Li, Ni, Co and Mn. The restored NCM523 exhibits uniform particle size distribution and intact laminar structure, as well as good cycling stability and rate performance as cathode materials for LIBs. The strategy is more atom economy efficiency and enviro-friendly than traditional pyrometallurgical and hydrometallurgical recycling technologies, which enables green and efficient closed-loop recycling of spent LIBs. This work provides an efficient and economic solution for the recovery and regeneration of spent lithium-ion battery cathode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莉莉发布了新的文献求助10
1秒前
Zoe发布了新的文献求助10
1秒前
Hover完成签到,获得积分10
1秒前
自然的茉莉完成签到,获得积分10
2秒前
2秒前
Mandy完成签到,获得积分10
2秒前
3秒前
脑洞疼应助qaq采纳,获得10
3秒前
世界尽头发布了新的文献求助10
3秒前
小二郎应助科研民工采纳,获得10
3秒前
4秒前
无奈满天发布了新的文献求助10
4秒前
5秒前
MADKAI发布了新的文献求助10
5秒前
5秒前
贪玩丸子完成签到,获得积分10
5秒前
神勇的雅香应助liutaili采纳,获得10
6秒前
KSGGS完成签到,获得积分10
6秒前
YANG关注了科研通微信公众号
6秒前
7秒前
7秒前
7秒前
99发布了新的文献求助10
8秒前
8秒前
科研通AI5应助qi采纳,获得10
8秒前
乐乐发布了新的文献求助10
9秒前
铸一字错发布了新的文献求助10
9秒前
受伤书文完成签到,获得积分10
10秒前
Yvonne发布了新的文献求助10
10秒前
10秒前
温柔的十三完成签到,获得积分10
10秒前
Ll发布了新的文献求助10
11秒前
nikai发布了新的文献求助10
11秒前
圣晟胜发布了新的文献求助10
11秒前
大个应助科研通管家采纳,获得10
11秒前
11秒前
田様应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
Leif应助科研通管家采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759