Separate first, then segment: An integrity segmentation network for salient object detection

分割 人工智能 计算机科学 计算机视觉 像素 突出 对象(语法) 边界(拓扑) 骨料(复合) GSM演进的增强数据速率 模式识别(心理学) 数学 数学分析 材料科学 复合材料
作者
Ge Zhu,Jinbao Li,Yahong Guo
出处
期刊:Pattern Recognition [Elsevier]
卷期号:150: 110328-110328 被引量:2
标识
DOI:10.1016/j.patcog.2024.110328
摘要

Current methods aggregate multi-level features or introduce auxiliary information to get more refined saliency maps. However, little attention is paid to how to obtain complete salient objects in cluttered background. To address this problem, we propose an integrity segmentation network (ISNet) with a novel detection paradigm that first separates the targets completely and then segment them finely. Specifically, the ISNet architecture consists of a target separation (TS) branch and an object segmentation (OS) branch, trained using a hierarchical difference-aware (HDA) loss. The TS branch equipped with a fractal structure is utilized to produce saliency features with expanded boundary (SF w/ EB), which can enlarge the difference of border details to separate the target from background completely. Compared with the edge and skeleton information, the SF w/ EB contains a more complete structure, which can supplement the defect of salient objects. The OS branch is leveraged to generate complementary features, which gradually integrates the SF w/ EB and aggregated features to segment complete saliency maps. Moreover, we propose the HDA loss to further improve the structural integrity of prediction, which hierarchically assigns weight to pixels according to their differences. Hard pixels will be given more attention to discriminate the similar parts between foreground and background. Comprehensive experimental results on five datasets show that the proposed ISNet outperforms the state-of-the-art methods both quantitatively and qualitatively. Concretely, compared with three typical models, the average gain percentage reaches 2.6% in terms of Fβ, Sm and MAE on two large complex datasets. The improvements demonstrate that the proposed ISNet are beneficial for improving the integrity of prediction. Besides, the ISNet is efficient and runs at a real-time speed of 39.5 FPS when processing an image with size of 320 × 320. Furthermore, the proposed model has better generalization, which can also be applied to other vision tasks to handle complex scenes. Codes are available at https://github.com/lesonly/ISNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jjn完成签到 ,获得积分10
刚刚
帅气的沧海完成签到 ,获得积分10
刚刚
清新的易真完成签到,获得积分10
1秒前
中华牌老阿姨完成签到,获得积分10
1秒前
feedyoursoul完成签到 ,获得积分10
2秒前
爱笑半雪完成签到,获得积分10
2秒前
3秒前
强哥很强完成签到,获得积分10
4秒前
tess应助陈正军采纳,获得10
5秒前
吴荣方完成签到 ,获得积分10
7秒前
乖乖完成签到,获得积分10
7秒前
8秒前
八方面完成签到 ,获得积分10
8秒前
c123完成签到 ,获得积分10
10秒前
sos完成签到,获得积分10
11秒前
白菜发布了新的文献求助10
11秒前
快递乱跑完成签到 ,获得积分10
12秒前
李东东完成签到 ,获得积分10
13秒前
lxhhh完成签到,获得积分10
15秒前
伶俐的无颜完成签到 ,获得积分10
15秒前
露露子应助WANG采纳,获得10
15秒前
lucy完成签到,获得积分10
19秒前
dfhjjj完成签到 ,获得积分10
22秒前
Aimee完成签到 ,获得积分10
24秒前
efengmo完成签到,获得积分10
25秒前
11111完成签到,获得积分10
25秒前
苦哈哈完成签到,获得积分10
26秒前
yuhaha完成签到,获得积分10
27秒前
嘻嘻哈哈啊完成签到 ,获得积分10
28秒前
随风完成签到,获得积分10
28秒前
兔葵燕麦完成签到 ,获得积分10
30秒前
仔仔在完成签到,获得积分10
30秒前
ssassassassa完成签到 ,获得积分10
36秒前
宇宙飞船2436完成签到,获得积分10
36秒前
tcy发布了新的文献求助10
37秒前
轻风完成签到 ,获得积分10
37秒前
喜悦的鬼神完成签到 ,获得积分10
39秒前
张小度ever完成签到 ,获得积分10
39秒前
LIVE完成签到,获得积分10
41秒前
白帝完成签到,获得积分20
41秒前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434856
求助须知:如何正确求助?哪些是违规求助? 3032180
关于积分的说明 8944468
捐赠科研通 2720149
什么是DOI,文献DOI怎么找? 1492192
科研通“疑难数据库(出版商)”最低求助积分说明 689725
邀请新用户注册赠送积分活动 685862