化学
水解
酶水解
盐(化学)
色谱法
脂质氧化
食品科学
钠
色氨酸
生物化学
有机化学
抗氧化剂
氨基酸
作者
Jianhao Li,Zihang Shi,Xiankang Fan,Lihui Du,Qiang Xia,Changyu Zhou,Yangying Sun,Baocai Xu,Daodong Pan
出处
期刊:Foods
[MDPI AG]
日期:2024-02-28
卷期号:13 (5): 737-737
被引量:1
标识
DOI:10.3390/foods13050737
摘要
The effects of low-sodium salt mixture substitution on the sensory quality, protein oxidation, and hydrolysis of air-dried chicken and its molecular mechanisms were investigated based on tandem mass tagging (TMT) quantitative proteomics. The composite salt formulated with 1.6% KCl, 0.8% MgCl2, and 5.6% NaCl was found to improve the freshness and texture quality scores. Low-sodium salt mixture substitution significantly decreased the carbonyl content (1.52 nmol/mg), surface hydrophobicity (102.58 μg), and dimeric tyrosine content (2.69 A.U.), and significantly increased the sulfhydryl content (74.46 nmol/mg) and tryptophan fluorescence intensity, suggesting that protein oxidation was inhibited. Furthermore, low-sodium salt mixture substitution significantly increased the protein hydrolysis index (0.067), and cathepsin B and L activities (102.13 U/g and 349.25 U/g), suggesting that protein hydrolysis was facilitated. The correlation results showed that changes in the degree of protein hydrolysis and protein oxidation were closely related to sensory quality. TMT quantitative proteomics indicated that the degradation of myosin and titin as well as changes in the activities of the enzymes, CNDP2, DPP7, ABHD12B, FADH2A, and AASS, were responsible for the changes in the taste quality. In addition, CNDP2, ALDH1A1, and NMNAT1 are key enzymes that reduce protein oxidation. Overall, KCl and MgCl2 composite salt substitution is an effective method for producing low-sodium air-dried chicken.
科研通智能强力驱动
Strongly Powered by AbleSci AI