From Oxygen Redox to Sulfur Redox: A Paradigm for Li-Rich Layered Cathodes

化学 氧化还原 硫黄 多硫化物 氧气 过电位 电化学 硫化物 阴极 化学物理 无机化学 电极 有机化学 电解质 物理化学
作者
Jingchang Li,Jiayi Tang,Jiaming Tian,Chen Cheng,Yuxin Liao,Bingwen Hu,Tao Yu,Haoyu Li,Zhaoguo Liu,Yuan Rao,Yu Deng,Liang Zhang,Xiaoyu Zhang,Shaohua Guo,Haoshen Zhou
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (11): 7274-7287 被引量:14
标识
DOI:10.1021/jacs.3c11569
摘要

The utilization of anionic redox chemistry provides an opportunity to further improve the energy density of Li-ion batteries, particularly for Li-rich layered oxides. However, oxygen-based hosts still suffer from unfavorable structural rearrangement, including the oxygen release and transition metal (TM)-ion migration, in association with the tenuous framework rooted in the ionicity of the TM–O bonding. An intrinsic solution, by using a sulfur-based host with strong TM–S covalency, is proposed here to buffer the lattice distortion upon the highly activating sulfur redox process, and it achieves howling success in stabilizing the host frameworks. Experimental results demonstrate the prolonged preservation of the layered sulfur lattice, especially the honeycomb superlattice, during the Li+ extraction/insertion process in contrast to the large structural degeneration in Li-rich oxides. Moreover, the Li-rich sulfide cathodes exhibited a negligible overpotential of 0.08 V and a voltage drop of 0.13 mV/cycle, while maintaining a substantial reversible capacity upon cycling. These superior electrochemical performances can be unambiguously ascribed to the much shorter trajectories of sulfur in comparison to those of oxygen revealed by molecular dynamics simulations at a large scale (∼30 nm) and a long time scale (∼300 ps) via high-dimensional neural network potentials during the delithiation process. Our findings highlight the importance of stabilizing host frameworks and establish general guidance for designing Li-rich cathodes with durable anionic redox chemistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叼面包的数学狗完成签到 ,获得积分10
2秒前
2秒前
3秒前
橙子大王发布了新的文献求助10
3秒前
YY完成签到,获得积分10
3秒前
阿成发布了新的文献求助10
3秒前
3秒前
阿莲呐发布了新的文献求助20
3秒前
5秒前
JamesPei应助XXXX采纳,获得10
6秒前
7秒前
7秒前
坦率班完成签到 ,获得积分10
8秒前
星河发布了新的文献求助20
8秒前
七七完成签到,获得积分10
9秒前
10秒前
SLY完成签到 ,获得积分10
11秒前
11秒前
所所应助跳跳虎采纳,获得10
11秒前
wanci应助seedcode采纳,获得10
12秒前
我是老大应助完犊子采纳,获得10
12秒前
Kevin发布了新的文献求助30
12秒前
13秒前
14秒前
灰灰灰完成签到,获得积分10
16秒前
牛牛眉目发布了新的文献求助10
16秒前
18秒前
哈哈哈完成签到,获得积分10
18秒前
七七发布了新的文献求助10
20秒前
22秒前
研友_nPb9e8完成签到,获得积分10
23秒前
科研通AI2S应助satan9采纳,获得10
24秒前
24秒前
badyoungboy完成签到,获得积分10
24秒前
邵晓啸发布了新的文献求助20
25秒前
星河完成签到,获得积分10
27秒前
追梦少年完成签到,获得积分10
28秒前
28秒前
tamo完成签到,获得积分10
29秒前
seedcode发布了新的文献求助10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388