医学
心力衰竭
体质指数
冠状动脉疾病
队列
人工智能
昼夜节律
心脏病学
接收机工作特性
内科学
心率变异性
心率
机器学习
计算机科学
血压
作者
Mohanad Alkhodari,Ahsan H. Khandoker,Herbert F. Jelinek,Angelos Karlas,Στέργιος Σουλαϊδόπουλος,Πέτρος Αρσένος,Ioannis Doundoulakis,Konstantinos Gatzoulis,Konstantinos Tsioufis,Leontios J. Hadjileontiadis
标识
DOI:10.1016/j.cmpb.2024.108107
摘要
Heart failure (HF) is a multi-faceted and life-threatening syndrome that affects more than 64.3 million people worldwide. Current gold-standard screening technique, echocardiography, neglects cardiovascular information regulated by the circadian rhythm and does not incorporate knowledge from patient profiles. In this study, we propose a novel multi-parameter approach to assess heart failure using heart rate variability (HRV) and patient clinical information.
科研通智能强力驱动
Strongly Powered by AbleSci AI