清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Reducing Quantitative Uncertainty Caused by Data Processing in Untargeted Metabolomics

化学 代谢组学 集合(抽象数据类型) 计算模型 变化(天文学) 数据集 支持向量机 计算机科学 数据挖掘 人工智能 色谱法 生物系统 天体物理学 生物 物理 程序设计语言
作者
Zixuan Zhang,Huaxu Yu,Ethan Wong-Ma,Pouneh Dokouhaki,Ahmed Mostafa,Jay Shavadia,Fang Wu,Tao Huan
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (9): 3727-3732
标识
DOI:10.1021/acs.analchem.3c04046
摘要

Processing liquid chromatography–mass spectrometry-based metabolomics data using computational programs often introduces additional quantitative uncertainty, termed computational variation in a previous work. This work develops a computational solution to automatically recognize metabolic features with computational variation in a metabolomics data set. This tool, AVIR (short for "Accurate eValuation of alIgnment and integRation"), is a support vector machine-based machine learning strategy (https://github.com/HuanLab/AVIR). The rationale is that metabolic features with computational variation have a poor correlation between chromatographic peak area and peak height-based quantifications across the samples in a study. AVIR was trained on a set of 696 manually curated metabolic features and achieved an accuracy of 94% in a 10-fold cross-validation. When tested on various external data sets from public metabolomics repositories, AVIR demonstrated an accuracy range of 84%–97%. Finally, tested on a large-scale metabolomics study, AVIR clearly indicated features with computational variation and thus guided us to manually correct them. Our results show that 75.3% of the samples with computational variation had a relative intensity difference of over 20% after correction. This demonstrates the critical role of AVIR in reducing computational variation to improve quantitative certainty in untargeted metabolomics analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
10秒前
12秒前
13秒前
15秒前
17秒前
18秒前
胖头鱼please完成签到,获得积分10
25秒前
36秒前
38秒前
45秒前
46秒前
1分钟前
1分钟前
Lorin完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
老张完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
紫熊发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
谦也静熵完成签到,获得积分10
4分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139610
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795348
捐赠科研通 2446958
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176