Reducing Quantitative Uncertainty Caused by Data Processing in Untargeted Metabolomics

化学 代谢组学 集合(抽象数据类型) 计算模型 变化(天文学) 数据集 支持向量机 计算机科学 数据挖掘 人工智能 色谱法 生物系统 天体物理学 生物 物理 程序设计语言
作者
Zixuan Zhang,Huaxu Yu,Ethan Wong-Ma,Pouneh Dokouhaki,Ahmed Mostafa,Jay Shavadia,Fang Wu,Tao Huan
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (9): 3727-3732
标识
DOI:10.1021/acs.analchem.3c04046
摘要

Processing liquid chromatography–mass spectrometry-based metabolomics data using computational programs often introduces additional quantitative uncertainty, termed computational variation in a previous work. This work develops a computational solution to automatically recognize metabolic features with computational variation in a metabolomics data set. This tool, AVIR (short for "Accurate eValuation of alIgnment and integRation"), is a support vector machine-based machine learning strategy (https://github.com/HuanLab/AVIR). The rationale is that metabolic features with computational variation have a poor correlation between chromatographic peak area and peak height-based quantifications across the samples in a study. AVIR was trained on a set of 696 manually curated metabolic features and achieved an accuracy of 94% in a 10-fold cross-validation. When tested on various external data sets from public metabolomics repositories, AVIR demonstrated an accuracy range of 84%–97%. Finally, tested on a large-scale metabolomics study, AVIR clearly indicated features with computational variation and thus guided us to manually correct them. Our results show that 75.3% of the samples with computational variation had a relative intensity difference of over 20% after correction. This demonstrates the critical role of AVIR in reducing computational variation to improve quantitative certainty in untargeted metabolomics analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuanqing发布了新的文献求助10
刚刚
楠屿完成签到,获得积分10
刚刚
mouxq发布了新的文献求助10
1秒前
1秒前
1秒前
yujia发布了新的文献求助10
1秒前
科技大佬发布了新的文献求助10
2秒前
素人渔夫完成签到,获得积分10
2秒前
打工仔完成签到,获得积分10
2秒前
跑得快的蜗牛完成签到,获得积分10
2秒前
科研通AI5应助科研小白采纳,获得10
3秒前
3秒前
4秒前
汉堡包应助王大敏采纳,获得10
4秒前
houxufeng完成签到 ,获得积分10
4秒前
5秒前
5秒前
直率雨柏发布了新的文献求助10
5秒前
5秒前
zzxp完成签到,获得积分10
6秒前
7秒前
7秒前
cocopepsi完成签到,获得积分10
7秒前
7秒前
7秒前
楠屿发布了新的文献求助10
7秒前
123466完成签到 ,获得积分10
8秒前
8秒前
8秒前
摩羯座小黄鸭完成签到,获得积分10
8秒前
8秒前
beenest发布了新的文献求助10
8秒前
9秒前
科研通AI5应助请叫我鬼才采纳,获得100
9秒前
oneday完成签到,获得积分10
9秒前
白色的风车完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
兰兰发布了新的文献求助10
10秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559