Assessment of Landslide Susceptibility using Geospatial Techniques: A Comparative Evaluation of Machine Learning and Statistical Models

支持向量机 地理空间分析 二元分析 山崩 随机森林 人工智能 接收机工作特性 机器学习 计算机科学 统计模型 数据挖掘 遥感 地质学 地貌学
作者
Subrata Raut,Dipanwita Dutta,Debarati Bera,R. K. Samanta
出处
期刊:Geological Journal [Wiley]
标识
DOI:10.1002/gj.5080
摘要

This study delineates landslide susceptibility zones in the Kalimpong district by integrating multi‐sensor datasets and assessing the effectiveness of statistical and machine learning models for precision mapping. The analysis utilises a comprehensive geospatial dataset, including remote sensing imagery, topographical, geological, and climatic factors. Four models were employed to generate landslide susceptibility maps (LSMs) using 16 influencing factors: two bivariate statistical models, frequency ratio (FR) and evidence belief function (EBF) and two machine learning models, random forest (RF) and support vector machine (SVM). Out of 1244 recorded landslide events, 871 events (70%) were used for training the models, and 373 events (30%) for validation. The distribution of susceptibility classes predicted by The RF and SVM models produced similar susceptibility distributions, predicting 13.30% and 14.30% of the area as highly susceptible, and 2.42% and 2.82% as very highly susceptible, respectively. In contrast, the FR model estimated 20.98% of the area as highly susceptible and 4.30% as very highly susceptible, whereas the EBF model predicted 17.42% and 5.89% for these categories, respectively. Model validation using receiver operating characteristic (ROC) curves revealed that the machine learning models (RF and SVM) had superior prediction accuracy with AUC values of 95.90% and 86.60%, respectively, compared to the statistical models (FR and EBF), which achieved AUC values of 74.30% and 76.80%. The findings indicate that Kalimpong‐I is most vulnerable, with 6.76% of its area categorised as very high susceptibility and 24.80% as high susceptibility. Conversely, the Gorubathan block exhibited the least susceptible, with 0.95% and 6.48% of its area classified as very high and high susceptibility, respectively. This research provides essential insights for decision‐makers and policy planners in landslide‐prone regions and can be instrumental in developing early warning systems, which are vital for enhancing community safety through timely evacuations and preparedness measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
上官若男应助Y_Jfeng采纳,获得10
2秒前
2秒前
麦子完成签到 ,获得积分10
3秒前
corazon发布了新的文献求助30
3秒前
CR完成签到,获得积分10
4秒前
邱名仕完成签到 ,获得积分10
4秒前
5秒前
花开富贵发布了新的文献求助10
6秒前
Lee关闭了Lee文献求助
7秒前
无极微光应助www采纳,获得20
7秒前
alexlpb完成签到,获得积分0
7秒前
江小白发布了新的文献求助10
8秒前
9秒前
英子发布了新的文献求助10
9秒前
鲁迪完成签到,获得积分10
9秒前
大模型应助cj采纳,获得10
11秒前
科研通AI2S应助xcc采纳,获得10
11秒前
12秒前
蓬蓬完成签到,获得积分10
13秒前
曲沉鱼发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
15秒前
corazon发布了新的文献求助30
15秒前
无极微光应助yana采纳,获得20
16秒前
Owen应助江风采纳,获得10
16秒前
18秒前
yy完成签到,获得积分10
20秒前
彭于晏应助Serena采纳,获得30
21秒前
学习发布了新的文献求助30
23秒前
yy发布了新的文献求助10
23秒前
鲁迪发布了新的文献求助30
24秒前
24秒前
cwj发布了新的文献求助30
24秒前
丹牛完成签到,获得积分10
25秒前
顺心的惜蕊完成签到 ,获得积分10
25秒前
25秒前
25秒前
金智媛发布了新的文献求助10
26秒前
大模型应助斯文明杰采纳,获得10
26秒前
眼睛大忆梅完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680081
求助须知:如何正确求助?哪些是违规求助? 4995956
关于积分的说明 15171678
捐赠科研通 4839887
什么是DOI,文献DOI怎么找? 2593687
邀请新用户注册赠送积分活动 1546696
关于科研通互助平台的介绍 1504768