清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Assessment of Landslide Susceptibility using Geospatial Techniques: A Comparative Evaluation of Machine Learning and Statistical Models

支持向量机 地理空间分析 二元分析 山崩 随机森林 人工智能 接收机工作特性 机器学习 计算机科学 统计模型 数据挖掘 遥感 地质学 地貌学
作者
Subrata Raut,Dipanwita Dutta,Debarati Bera,R. K. Samanta
出处
期刊:Geological Journal [Wiley]
标识
DOI:10.1002/gj.5080
摘要

This study delineates landslide susceptibility zones in the Kalimpong district by integrating multi‐sensor datasets and assessing the effectiveness of statistical and machine learning models for precision mapping. The analysis utilises a comprehensive geospatial dataset, including remote sensing imagery, topographical, geological, and climatic factors. Four models were employed to generate landslide susceptibility maps (LSMs) using 16 influencing factors: two bivariate statistical models, frequency ratio (FR) and evidence belief function (EBF) and two machine learning models, random forest (RF) and support vector machine (SVM). Out of 1244 recorded landslide events, 871 events (70%) were used for training the models, and 373 events (30%) for validation. The distribution of susceptibility classes predicted by The RF and SVM models produced similar susceptibility distributions, predicting 13.30% and 14.30% of the area as highly susceptible, and 2.42% and 2.82% as very highly susceptible, respectively. In contrast, the FR model estimated 20.98% of the area as highly susceptible and 4.30% as very highly susceptible, whereas the EBF model predicted 17.42% and 5.89% for these categories, respectively. Model validation using receiver operating characteristic (ROC) curves revealed that the machine learning models (RF and SVM) had superior prediction accuracy with AUC values of 95.90% and 86.60%, respectively, compared to the statistical models (FR and EBF), which achieved AUC values of 74.30% and 76.80%. The findings indicate that Kalimpong‐I is most vulnerable, with 6.76% of its area categorised as very high susceptibility and 24.80% as high susceptibility. Conversely, the Gorubathan block exhibited the least susceptible, with 0.95% and 6.48% of its area classified as very high and high susceptibility, respectively. This research provides essential insights for decision‐makers and policy planners in landslide‐prone regions and can be instrumental in developing early warning systems, which are vital for enhancing community safety through timely evacuations and preparedness measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
25秒前
李铛铛发布了新的文献求助10
32秒前
38秒前
38秒前
38秒前
39秒前
39秒前
39秒前
39秒前
40秒前
40秒前
40秒前
41秒前
科研通AI6应助李铛铛采纳,获得10
41秒前
41秒前
41秒前
Everything完成签到,获得积分10
42秒前
44秒前
44秒前
niko发布了新的文献求助10
44秒前
niko发布了新的文献求助10
44秒前
niko发布了新的文献求助30
44秒前
niko发布了新的文献求助10
44秒前
niko发布了新的文献求助30
44秒前
niko发布了新的文献求助10
44秒前
niko发布了新的文献求助10
45秒前
niko发布了新的文献求助10
45秒前
niko发布了新的文献求助10
45秒前
niko发布了新的文献求助10
45秒前
niko发布了新的文献求助10
45秒前
niko发布了新的文献求助10
45秒前
酷炫凡完成签到 ,获得积分10
50秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
华仔应助Luke采纳,获得10
53秒前
55秒前
shhoing应助niko采纳,获得10
59秒前
NexusExplorer应助niko采纳,获得10
59秒前
李健的小迷弟应助zzzzz采纳,获得10
59秒前
CodeCraft应助niko采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534416
求助须知:如何正确求助?哪些是违规求助? 4622404
关于积分的说明 14582630
捐赠科研通 4562632
什么是DOI,文献DOI怎么找? 2500278
邀请新用户注册赠送积分活动 1479820
关于科研通互助平台的介绍 1451022