Assessment of Landslide Susceptibility using Geospatial Techniques: A Comparative Evaluation of Machine Learning and Statistical Models

支持向量机 地理空间分析 二元分析 山崩 随机森林 人工智能 接收机工作特性 机器学习 计算机科学 统计模型 数据挖掘 遥感 地质学 地貌学
作者
Subrata Raut,Dipanwita Dutta,Debarati Bera,R. K. Samanta
出处
期刊:Geological Journal [Wiley]
标识
DOI:10.1002/gj.5080
摘要

This study delineates landslide susceptibility zones in the Kalimpong district by integrating multi‐sensor datasets and assessing the effectiveness of statistical and machine learning models for precision mapping. The analysis utilises a comprehensive geospatial dataset, including remote sensing imagery, topographical, geological, and climatic factors. Four models were employed to generate landslide susceptibility maps (LSMs) using 16 influencing factors: two bivariate statistical models, frequency ratio (FR) and evidence belief function (EBF) and two machine learning models, random forest (RF) and support vector machine (SVM). Out of 1244 recorded landslide events, 871 events (70%) were used for training the models, and 373 events (30%) for validation. The distribution of susceptibility classes predicted by The RF and SVM models produced similar susceptibility distributions, predicting 13.30% and 14.30% of the area as highly susceptible, and 2.42% and 2.82% as very highly susceptible, respectively. In contrast, the FR model estimated 20.98% of the area as highly susceptible and 4.30% as very highly susceptible, whereas the EBF model predicted 17.42% and 5.89% for these categories, respectively. Model validation using receiver operating characteristic (ROC) curves revealed that the machine learning models (RF and SVM) had superior prediction accuracy with AUC values of 95.90% and 86.60%, respectively, compared to the statistical models (FR and EBF), which achieved AUC values of 74.30% and 76.80%. The findings indicate that Kalimpong‐I is most vulnerable, with 6.76% of its area categorised as very high susceptibility and 24.80% as high susceptibility. Conversely, the Gorubathan block exhibited the least susceptible, with 0.95% and 6.48% of its area classified as very high and high susceptibility, respectively. This research provides essential insights for decision‐makers and policy planners in landslide‐prone regions and can be instrumental in developing early warning systems, which are vital for enhancing community safety through timely evacuations and preparedness measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃的猫咪完成签到,获得积分10
刚刚
1秒前
WHH完成签到,获得积分10
1秒前
monrial发布了新的文献求助10
1秒前
GarrickO应助舒心数据线采纳,获得20
1秒前
davidvon发布了新的文献求助20
1秒前
1秒前
wqwq69发布了新的文献求助10
2秒前
调皮雨莲发布了新的文献求助10
2秒前
2秒前
niania发布了新的文献求助10
2秒前
假装有昵称完成签到 ,获得积分10
2秒前
3秒前
程辞完成签到 ,获得积分10
3秒前
愤怒的乐巧关注了科研通微信公众号
3秒前
Ava应助辛勤芷天采纳,获得10
3秒前
4秒前
可靠的秋尽完成签到,获得积分10
4秒前
4秒前
5秒前
卢浩发布了新的文献求助10
5秒前
5秒前
高高很厉害完成签到,获得积分10
5秒前
Candices完成签到,获得积分20
5秒前
5秒前
亦雪发布了新的文献求助10
5秒前
凌风发布了新的文献求助10
5秒前
7秒前
jojo完成签到 ,获得积分10
7秒前
Belief发布了新的文献求助10
7秒前
7秒前
dengy发布了新的文献求助10
8秒前
8秒前
zzzzzz发布了新的文献求助10
8秒前
归尘发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
LV完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352249
求助须知:如何正确求助?哪些是违规求助? 4485120
关于积分的说明 13962087
捐赠科研通 4385062
什么是DOI,文献DOI怎么找? 2409251
邀请新用户注册赠送积分活动 1401706
关于科研通互助平台的介绍 1375258