Assessment of Landslide Susceptibility using Geospatial Techniques: A Comparative Evaluation of Machine Learning and Statistical Models

支持向量机 地理空间分析 二元分析 山崩 随机森林 人工智能 接收机工作特性 机器学习 计算机科学 统计模型 数据挖掘 遥感 地质学 地貌学
作者
Subrata Raut,Dipanwita Dutta,Debarati Bera,R. K. Samanta
出处
期刊:Geological Journal [Wiley]
标识
DOI:10.1002/gj.5080
摘要

This study delineates landslide susceptibility zones in the Kalimpong district by integrating multi‐sensor datasets and assessing the effectiveness of statistical and machine learning models for precision mapping. The analysis utilises a comprehensive geospatial dataset, including remote sensing imagery, topographical, geological, and climatic factors. Four models were employed to generate landslide susceptibility maps (LSMs) using 16 influencing factors: two bivariate statistical models, frequency ratio (FR) and evidence belief function (EBF) and two machine learning models, random forest (RF) and support vector machine (SVM). Out of 1244 recorded landslide events, 871 events (70%) were used for training the models, and 373 events (30%) for validation. The distribution of susceptibility classes predicted by The RF and SVM models produced similar susceptibility distributions, predicting 13.30% and 14.30% of the area as highly susceptible, and 2.42% and 2.82% as very highly susceptible, respectively. In contrast, the FR model estimated 20.98% of the area as highly susceptible and 4.30% as very highly susceptible, whereas the EBF model predicted 17.42% and 5.89% for these categories, respectively. Model validation using receiver operating characteristic (ROC) curves revealed that the machine learning models (RF and SVM) had superior prediction accuracy with AUC values of 95.90% and 86.60%, respectively, compared to the statistical models (FR and EBF), which achieved AUC values of 74.30% and 76.80%. The findings indicate that Kalimpong‐I is most vulnerable, with 6.76% of its area categorised as very high susceptibility and 24.80% as high susceptibility. Conversely, the Gorubathan block exhibited the least susceptible, with 0.95% and 6.48% of its area classified as very high and high susceptibility, respectively. This research provides essential insights for decision‐makers and policy planners in landslide‐prone regions and can be instrumental in developing early warning systems, which are vital for enhancing community safety through timely evacuations and preparedness measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Jason发布了新的文献求助10
1秒前
科研通AI6应助王泽坤采纳,获得30
1秒前
灿灿完成签到 ,获得积分10
2秒前
LewisAcid应助王小凡采纳,获得20
2秒前
2秒前
gyq完成签到,获得积分10
2秒前
hastur完成签到,获得积分10
2秒前
烟花应助huyz采纳,获得10
2秒前
1111111111111发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
伊宝宝完成签到,获得积分20
3秒前
Lucas应助qiang采纳,获得10
3秒前
4秒前
DY发布了新的文献求助10
4秒前
里苏特发布了新的文献求助10
5秒前
6秒前
赛赛发布了新的文献求助10
6秒前
候月完成签到,获得积分10
6秒前
lulu完成签到,获得积分10
7秒前
7秒前
chizhi完成签到,获得积分10
7秒前
星辰大海应助demo采纳,获得10
7秒前
8秒前
Jessy发布了新的文献求助10
8秒前
ysta发布了新的文献求助10
8秒前
大模型应助感性的小土豆采纳,获得10
9秒前
单纯念寒完成签到,获得积分10
9秒前
9秒前
9秒前
丘比特应助香蕉秋柳采纳,获得10
10秒前
宇文向雪发布了新的文献求助30
10秒前
候月发布了新的文献求助10
10秒前
天天快乐应助醉熏的芷卉采纳,获得10
11秒前
领导范儿应助ccalvintan采纳,获得10
11秒前
单纯的风华完成签到,获得积分10
11秒前
华仔应助tuzhihong采纳,获得10
12秒前
领导范儿应助欢呼尔蓝采纳,获得10
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619405
求助须知:如何正确求助?哪些是违规求助? 4704160
关于积分的说明 14926129
捐赠科研通 4759826
什么是DOI,文献DOI怎么找? 2550547
邀请新用户注册赠送积分活动 1513336
关于科研通互助平台的介绍 1474401