亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessment of Landslide Susceptibility using Geospatial Techniques: A Comparative Evaluation of Machine Learning and Statistical Models

支持向量机 地理空间分析 二元分析 山崩 随机森林 人工智能 接收机工作特性 机器学习 计算机科学 统计模型 数据挖掘 遥感 地质学 地貌学
作者
Subrata Raut,Dipanwita Dutta,Debarati Bera,R. K. Samanta
出处
期刊:Geological Journal [Wiley]
标识
DOI:10.1002/gj.5080
摘要

This study delineates landslide susceptibility zones in the Kalimpong district by integrating multi‐sensor datasets and assessing the effectiveness of statistical and machine learning models for precision mapping. The analysis utilises a comprehensive geospatial dataset, including remote sensing imagery, topographical, geological, and climatic factors. Four models were employed to generate landslide susceptibility maps (LSMs) using 16 influencing factors: two bivariate statistical models, frequency ratio (FR) and evidence belief function (EBF) and two machine learning models, random forest (RF) and support vector machine (SVM). Out of 1244 recorded landslide events, 871 events (70%) were used for training the models, and 373 events (30%) for validation. The distribution of susceptibility classes predicted by The RF and SVM models produced similar susceptibility distributions, predicting 13.30% and 14.30% of the area as highly susceptible, and 2.42% and 2.82% as very highly susceptible, respectively. In contrast, the FR model estimated 20.98% of the area as highly susceptible and 4.30% as very highly susceptible, whereas the EBF model predicted 17.42% and 5.89% for these categories, respectively. Model validation using receiver operating characteristic (ROC) curves revealed that the machine learning models (RF and SVM) had superior prediction accuracy with AUC values of 95.90% and 86.60%, respectively, compared to the statistical models (FR and EBF), which achieved AUC values of 74.30% and 76.80%. The findings indicate that Kalimpong‐I is most vulnerable, with 6.76% of its area categorised as very high susceptibility and 24.80% as high susceptibility. Conversely, the Gorubathan block exhibited the least susceptible, with 0.95% and 6.48% of its area classified as very high and high susceptibility, respectively. This research provides essential insights for decision‐makers and policy planners in landslide‐prone regions and can be instrumental in developing early warning systems, which are vital for enhancing community safety through timely evacuations and preparedness measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细心薯片完成签到 ,获得积分10
5秒前
6秒前
雷锋完成签到,获得积分10
6秒前
LIU完成签到 ,获得积分10
6秒前
乐乐应助袁咏琳冲冲冲采纳,获得10
7秒前
Shyee完成签到 ,获得积分10
9秒前
干饭大王应助奶茶采纳,获得10
9秒前
yunxiao完成签到 ,获得积分10
12秒前
风轻萤完成签到,获得积分10
14秒前
pojian完成签到,获得积分10
17秒前
汉堡包应助Q123ba叭采纳,获得10
19秒前
奶茶完成签到,获得积分10
21秒前
Hcc完成签到 ,获得积分10
23秒前
28秒前
科研通AI2S应助满意的世界采纳,获得10
30秒前
Q123ba叭发布了新的文献求助10
33秒前
李爱国应助可乐采纳,获得10
35秒前
单薄乐珍完成签到 ,获得积分0
38秒前
赝品也烂漫完成签到,获得积分10
44秒前
1分钟前
Mary发布了新的文献求助10
1分钟前
1分钟前
1分钟前
dew发布了新的文献求助10
1分钟前
Vivian发布了新的文献求助10
1分钟前
1分钟前
dew完成签到,获得积分10
1分钟前
1分钟前
orixero应助亓雅丽采纳,获得10
1分钟前
梅倪完成签到,获得积分10
1分钟前
所所应助科研进化中采纳,获得10
1分钟前
1分钟前
1分钟前
Vivian完成签到,获得积分10
1分钟前
1分钟前
DoctorG发布了新的文献求助10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965570
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155342
捐赠科研通 3245324
什么是DOI,文献DOI怎么找? 1792823
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176