Assessment of Landslide Susceptibility using Geospatial Techniques: A Comparative Evaluation of Machine Learning and Statistical Models

支持向量机 地理空间分析 二元分析 山崩 随机森林 人工智能 接收机工作特性 机器学习 计算机科学 统计模型 数据挖掘 遥感 地质学 地貌学
作者
Subrata Raut,Dipanwita Dutta,Debarati Bera,R. K. Samanta
出处
期刊:Geological Journal [Wiley]
标识
DOI:10.1002/gj.5080
摘要

This study delineates landslide susceptibility zones in the Kalimpong district by integrating multi‐sensor datasets and assessing the effectiveness of statistical and machine learning models for precision mapping. The analysis utilises a comprehensive geospatial dataset, including remote sensing imagery, topographical, geological, and climatic factors. Four models were employed to generate landslide susceptibility maps (LSMs) using 16 influencing factors: two bivariate statistical models, frequency ratio (FR) and evidence belief function (EBF) and two machine learning models, random forest (RF) and support vector machine (SVM). Out of 1244 recorded landslide events, 871 events (70%) were used for training the models, and 373 events (30%) for validation. The distribution of susceptibility classes predicted by The RF and SVM models produced similar susceptibility distributions, predicting 13.30% and 14.30% of the area as highly susceptible, and 2.42% and 2.82% as very highly susceptible, respectively. In contrast, the FR model estimated 20.98% of the area as highly susceptible and 4.30% as very highly susceptible, whereas the EBF model predicted 17.42% and 5.89% for these categories, respectively. Model validation using receiver operating characteristic (ROC) curves revealed that the machine learning models (RF and SVM) had superior prediction accuracy with AUC values of 95.90% and 86.60%, respectively, compared to the statistical models (FR and EBF), which achieved AUC values of 74.30% and 76.80%. The findings indicate that Kalimpong‐I is most vulnerable, with 6.76% of its area categorised as very high susceptibility and 24.80% as high susceptibility. Conversely, the Gorubathan block exhibited the least susceptible, with 0.95% and 6.48% of its area classified as very high and high susceptibility, respectively. This research provides essential insights for decision‐makers and policy planners in landslide‐prone regions and can be instrumental in developing early warning systems, which are vital for enhancing community safety through timely evacuations and preparedness measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
SciGPT应助childghost采纳,获得10
1秒前
熊猫海发布了新的文献求助10
1秒前
李健应助CoNor采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
adgcxvjj发布了新的文献求助10
1秒前
orixero应助wang采纳,获得30
2秒前
爆米花应助Time采纳,获得10
2秒前
木子之水发布了新的文献求助10
2秒前
爱听歌土豆完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
5秒前
在水一方应助哒哒哒采纳,获得10
5秒前
情怀应助hyw采纳,获得10
6秒前
轻松听双完成签到 ,获得积分10
6秒前
6秒前
6秒前
ss关闭了ss文献求助
6秒前
李爱国应助ponowang采纳,获得10
7秒前
刘恩瑜发布了新的文献求助10
7秒前
7秒前
7秒前
hzh发布了新的文献求助10
7秒前
欣慰马里奥完成签到 ,获得积分10
8秒前
霸气沛文完成签到,获得积分10
8秒前
所所应助章德仁采纳,获得10
9秒前
田様应助mdmdd采纳,获得10
9秒前
Alin发布了新的文献求助10
10秒前
10秒前
窦慕卉完成签到,获得积分10
11秒前
11秒前
12秒前
qianqina发布了新的文献求助10
12秒前
ZZ完成签到,获得积分10
13秒前
13秒前
hzh完成签到,获得积分10
13秒前
hnl完成签到,获得积分10
14秒前
WZC发布了新的文献求助10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704813
求助须知:如何正确求助?哪些是违规求助? 5158878
关于积分的说明 15242939
捐赠科研通 4858662
什么是DOI,文献DOI怎么找? 2607392
邀请新用户注册赠送积分活动 1558393
关于科研通互助平台的介绍 1516137