Assessment of Landslide Susceptibility using Geospatial Techniques: A Comparative Evaluation of Machine Learning and Statistical Models

支持向量机 地理空间分析 二元分析 山崩 随机森林 人工智能 接收机工作特性 机器学习 计算机科学 统计模型 数据挖掘 遥感 地质学 地貌学
作者
Subrata Raut,Dipanwita Dutta,Debarati Bera,R. K. Samanta
出处
期刊:Geological Journal [Wiley]
标识
DOI:10.1002/gj.5080
摘要

This study delineates landslide susceptibility zones in the Kalimpong district by integrating multi‐sensor datasets and assessing the effectiveness of statistical and machine learning models for precision mapping. The analysis utilises a comprehensive geospatial dataset, including remote sensing imagery, topographical, geological, and climatic factors. Four models were employed to generate landslide susceptibility maps (LSMs) using 16 influencing factors: two bivariate statistical models, frequency ratio (FR) and evidence belief function (EBF) and two machine learning models, random forest (RF) and support vector machine (SVM). Out of 1244 recorded landslide events, 871 events (70%) were used for training the models, and 373 events (30%) for validation. The distribution of susceptibility classes predicted by The RF and SVM models produced similar susceptibility distributions, predicting 13.30% and 14.30% of the area as highly susceptible, and 2.42% and 2.82% as very highly susceptible, respectively. In contrast, the FR model estimated 20.98% of the area as highly susceptible and 4.30% as very highly susceptible, whereas the EBF model predicted 17.42% and 5.89% for these categories, respectively. Model validation using receiver operating characteristic (ROC) curves revealed that the machine learning models (RF and SVM) had superior prediction accuracy with AUC values of 95.90% and 86.60%, respectively, compared to the statistical models (FR and EBF), which achieved AUC values of 74.30% and 76.80%. The findings indicate that Kalimpong‐I is most vulnerable, with 6.76% of its area categorised as very high susceptibility and 24.80% as high susceptibility. Conversely, the Gorubathan block exhibited the least susceptible, with 0.95% and 6.48% of its area classified as very high and high susceptibility, respectively. This research provides essential insights for decision‐makers and policy planners in landslide‐prone regions and can be instrumental in developing early warning systems, which are vital for enhancing community safety through timely evacuations and preparedness measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaaaaa完成签到,获得积分10
1秒前
June完成签到 ,获得积分10
1秒前
葡萄小伊ovo完成签到 ,获得积分10
2秒前
rqf完成签到,获得积分10
3秒前
上官若男应助不如看海采纳,获得10
4秒前
白衣修身完成签到,获得积分10
5秒前
tt完成签到 ,获得积分10
5秒前
细心的盼易完成签到 ,获得积分10
5秒前
卓垚完成签到,获得积分10
5秒前
桃李完成签到,获得积分20
6秒前
莫愁一舞完成签到,获得积分10
7秒前
火星上无春完成签到 ,获得积分10
9秒前
东少完成签到,获得积分10
10秒前
yp发布了新的文献求助10
10秒前
11秒前
Violet完成签到 ,获得积分10
11秒前
李木禾完成签到 ,获得积分10
11秒前
体贴的夕阳完成签到 ,获得积分20
12秒前
12秒前
王妍完成签到 ,获得积分10
13秒前
yyy发布了新的文献求助10
14秒前
www关闭了www文献求助
14秒前
14秒前
liang19640908完成签到 ,获得积分10
14秒前
飞兔完成签到 ,获得积分10
15秒前
16秒前
LLL完成签到,获得积分10
16秒前
2000pluv完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
居不易完成签到,获得积分10
17秒前
牟泓宇完成签到 ,获得积分10
18秒前
RYAN完成签到 ,获得积分10
18秒前
ALU完成签到 ,获得积分10
18秒前
不如看海发布了新的文献求助10
18秒前
一如完成签到 ,获得积分10
20秒前
lili发布了新的文献求助10
20秒前
伶俐雪曼完成签到,获得积分10
21秒前
yyy完成签到,获得积分10
23秒前
科研王子完成签到,获得积分10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
A Systemic-Functional Study of Language Choice in Singapore 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4871004
求助须知:如何正确求助?哪些是违规求助? 4161130
关于积分的说明 12902777
捐赠科研通 3916945
什么是DOI,文献DOI怎么找? 2150903
邀请新用户注册赠送积分活动 1169186
关于科研通互助平台的介绍 1073026