CT-Mamba: A Hybrid Convolutional State Space Model for Low-Dose CT Denoising

降噪 计算机科学 空格(标点符号) 状态空间 人工智能 数学 统计 操作系统
作者
Linxuan Li,W.W. Wei,Luyao Yang,Wenwen Zhang,Jieke Dong,Wei Zhao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2411.07930
摘要

Low-dose CT (LDCT) significantly reduces the radiation dose received by patients, thereby decreasing potential health risks. However, dose reduction introduces additional noise and artifacts, adversely affecting image quality and clinical diagnosis. Currently, denoising methods based on convolutional neural networks (CNNs) face limitations in long-range modeling capabilities, while Transformer-based denoising methods, although capable of powerful long-range modeling, suffer from high computational complexity. Furthermore, the denoised images predicted by deep learning-based techniques inevitably exhibit differences in noise distribution compared to Normal-dose CT (NDCT) images, which can also impact the final image quality and diagnostic outcomes. In recent years, the feasibility of applying deep learning methods to low-dose CT imaging has been demonstrated, leading to significant achievements. This paper proposes CT-Mamba, a hybrid convolutional State Space Model for LDCT image denoising. The model combines the local feature extraction advantages of CNNs with Mamba's global modeling capability, enabling it to capture both local details and global context. Additionally, a Mamba-driven deep noise power spectrum (NPS) loss function was designed to guide model training, ensuring that the noise texture of the denoised LDCT images closely resembles that of NDCT images, thereby enhancing overall image quality and diagnostic value. Experimental results have demonstrated that CT-Mamba performs excellently in reducing noise in LDCT images, enhancing detail preservation, and optimizing noise texture distribution, while demonstrating statistically similar radiomics features to those of NDCT images (p > 0.05). The proposed CT-Mamba demonstrates outstanding performance in LDCT denoising and holds promise as a representative approach for applying the Mamba framework to LDCT denoising tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助phentjn采纳,获得10
刚刚
1秒前
1秒前
英俊的铭应助大方明杰采纳,获得50
1秒前
2秒前
ghost发布了新的文献求助10
2秒前
星辰大海应助周嘉琪采纳,获得10
3秒前
阳光怀亦发布了新的文献求助30
3秒前
4秒前
Petrichor完成签到,获得积分10
4秒前
4秒前
hxs发布了新的文献求助10
4秒前
小二郎应助甜美的芝采纳,获得10
4秒前
starry发布了新的文献求助10
5秒前
5秒前
安吉拉发布了新的文献求助10
5秒前
111完成签到,获得积分20
5秒前
6秒前
7秒前
Aikesi发布了新的文献求助10
7秒前
发呆的小号完成签到 ,获得积分10
8秒前
8秒前
8秒前
Lucas应助研友_841rlL采纳,获得10
8秒前
CipherSage应助范芙蓉采纳,获得10
9秒前
科研通AI5应助曾经初珍采纳,获得10
9秒前
夕颜如玉发布了新的文献求助10
9秒前
10秒前
小达完成签到 ,获得积分10
10秒前
10秒前
赘婿应助行错骤回头采纳,获得10
11秒前
华仔应助syyw2021采纳,获得10
11秒前
Ava应助会笑的猪猪猫采纳,获得10
11秒前
闪闪盼兰发布了新的文献求助10
12秒前
yzxzdm发布了新的文献求助10
12秒前
沙拉依丁完成签到,获得积分10
13秒前
科研通AI2S应助lbwertyty采纳,获得10
13秒前
14秒前
Re发布了新的文献求助10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515364
求助须知:如何正确求助?哪些是违规求助? 3097702
关于积分的说明 9236476
捐赠科研通 2792578
什么是DOI,文献DOI怎么找? 1532606
邀请新用户注册赠送积分活动 712198
科研通“疑难数据库(出版商)”最低求助积分说明 707160