作者
H. Aghaee Rad,T. L. Ainsworth,Rafael N. Alexander,B. Altieri,Mohsen Falamarzi Askarani,R. Baby,Leonardo Banchi,Ben Q. Baragiola,J. Eli Bourassa,Rachel S. Chadwick,I. Charania,Hongxiang Chen,Matthew J. Collins,Pietro Contu,Nathan D’Arcy,Guillaume Dauphinais,Robbe De Prins,D. Deschenes,Ilaria Di Luch,Sebastián Duque,Parimal Edke,S. E. Fayer,Samuele Ferracin,Hugo Ferretti,José Gefaell,Scott Glancy,Carlos González-Arciniegas,T. Grainge,Zhenyu Han,Jacob Hastrup,L. G. Helt,Timo Hillmann,Jasbir S. Hundal,Shintaro Izumi,Thomas Jaeken,M. Jonas,Sacha Kocsis,Inna Krasnokutska,Mikkel V. Larsen,P. Laskowski,Fabian Laudenbach,Jonathan Lavoie,M. Li,Emma Lomonte,Carlos E. Lopetegui,Ben Luey,Austin P. Lund,Chensheng Ma,Lars S. Madsen,Dylan H. Mahler,L. Calderón,M. Menotti,Filippo M. Miatto,Blair Morrison,Priya J. Nadkarni,Tomohiro Nakamura,Leonhard Neuhaus,Zeyue Niu,Rintaro Noro,K. Papirov,Arthur Pesah,D. S. Phillips,William N. Plick,T. Rogalsky,Fabien Rortais,Javier Sabines-Chesterking,S. Safavi-Bayat,E. Sazhaev,Michael H. Seymour,Kimia Rezaei Shad,Mark P. Silverman,Srinivasan Ashwyn Srinivasan,M. Stephan,Q. Y. Tang,Joel F. Tasker,Yong Siah Teo,R. B. Then,Jean‐Éric Tremblay,Ilan Tzitrin,Varun Vaidya,Michael Vasmer,Z. Vernon,L. F. S. S. M. Villalobos,Blayney W. Walshe,R. Weil,Xia Xin,Xiao Yan,Yuan Yao,M. Zamani Abnili,Y. Zhang
摘要
Photonics offers a promising platform for quantum computing1–4, owing to the availability of chip integration for mass-manufacturable modules, fibre optics for networking and room-temperature operation of most components. However, experimental demonstrations are needed of complete integrated systems comprising all basic functionalities for universal and fault-tolerant operation5. Here we construct a (sub-performant) scale model of a quantum computer using 35 photonic chips to demonstrate its functionality and feasibility. This combines all the primitive components as discrete, scalable rack-deployed modules networked over fibre-optic interconnects, including 84 squeezers6 and 36 photon-number-resolving detectors furnishing 12 physical qubit modes at each clock cycle. We use this machine, which we name Aurora, to synthesize a cluster state7 entangled across separate chips with 86.4 billion modes, and demonstrate its capability of implementing the foliated distance-2 repetition code with real-time decoding. The key building blocks needed for universality and fault tolerance are demonstrated: heralded synthesis of single-temporal-mode non-Gaussian resource states, real-time multiplexing actuated on photon-number-resolving detection, spatiotemporal cluster-state formation with fibre buffers, and adaptive measurements implemented using chip-integrated homodyne detectors with real-time single-clock-cycle feedforward. We also present a detailed analysis of our architecture's tolerances for optical loss, which is the dominant and most challenging hurdle to crossing the fault-tolerant threshold. This work lays out the path to cross the fault-tolerant threshold and scale photonic quantum computers to the point of addressing useful applications. A proof-of-principle study reports a complete photonic quantum computer architecture that can, once appropriate component performance is achieved, deliver a universal and fault-tolerant quantum computer.