期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers] 日期:2025-01-01卷期号:: 1-1
标识
DOI:10.1109/jiot.2024.3522164
摘要
This research introduces the Density-Clustering based Aggregation for Personalized Federated Learning (DCPFL) algorithm, which utilizes DBSCAN clustering to enhance model accuracy in AI-enabled aerial and edge computing contexts, particularly for UAVs. The DCPFL framework promotes model sharing among clients, fostering the development of personalized and optimized models. DBSCAN is beneficial in automatically determining cluster numbers using EPS neighborhoods and MinPts, with parameter optimization achieved through cross-experimental analysis. We further refined the model exchange mechanism by integrating a moving average prediction model to optimize the timing of these exchanges. Tests conducted on three public datasets covering two different machine learning tasks show that DCPFL surpasses existing methods, offering greater accuracy and enhanced adaptability in varied data environments. Implementing this algorithm in UAV networks leverages AI capabilities in aerial and edge computing to efficiently balance personalized modeling requirements with high performance, showcasing its potential to push federated learning forward in complex and dynamic settings.