Advances in Triboelectric Energy Harvesting at Liquid–Liquid Interfaces

摩擦电效应 能量收集 材料科学 能量(信号处理) 计算机科学 工艺工程 环境科学 工程类 物理 复合材料 量子力学
作者
K. Manojkumar,Mukilan Muthuramalingam,Dhara Sateesh,Sugato Hajra,Swati Panda,Hoe Joon Kim,S. Arunmetha,Venkateswaran Vivekananthan
出处
期刊:ACS applied energy materials [American Chemical Society]
标识
DOI:10.1021/acsaem.4c02268
摘要

The rapid development of energy harvesting devices, driven by the need for sustainable energy, has led to innovative solutions in nanotechnology. Triboelectric nanogenerators (TENGs) stand out for their ability to convert mechanical energy from various environmental sources into electrical power. This review delves into the recent advancements in TENGs, particularly those focusing on liquid–liquid interfaces. Liquid–liquid charge exchange (L-LCE) TENGs, an emerging innovation, offer several advantages over traditional solid-based TENGs, including enhanced adaptability and efficiency under variable environmental conditions. The triboelectric effect and electrostatic induction, essential to TENGs, enable energy harvesting from familiar sources, such as human motion, wind, ocean waves, and vibrations. The review explores the charge transfer mechanisms between immiscible liquids, such as deionized water and transformer oil, focusing on the electric double layer (EDL) formation at the liquid–liquid interface. Factors such as ion concentration and chemical composition influencing the EDL are analyzed. Liquid–liquid interactions allow for higher surface charge densities and a superior energy harvesting efficiency. This makes L-LCE TENGs particularly promising for small-scale applications such as wearable electronics and medical devices as well as large-scale systems. The potential of liquid–liquid TENGs in remote, off-grid environments is also discussed, where traditional power sources may not be viable. This review covers current mechanisms, applications, and the future of liquid–liquid TENGs, highlighting their transformative role in energy harvesting technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙傲天发布了新的文献求助10
刚刚
1秒前
勤劳锦程完成签到 ,获得积分10
3秒前
小李子发布了新的文献求助10
4秒前
无语的秋蝶完成签到 ,获得积分10
5秒前
8秒前
9秒前
懵了完成签到,获得积分10
10秒前
11秒前
11秒前
龙傲天完成签到,获得积分10
13秒前
zzzzy完成签到,获得积分10
13秒前
sysm发布了新的文献求助10
13秒前
温柔凌晴发布了新的文献求助60
13秒前
科研通AI5应助Jjj采纳,获得10
15秒前
弦和发布了新的文献求助10
15秒前
我是老大应助陈橙橙采纳,获得10
15秒前
zzzzy发布了新的文献求助20
16秒前
呆萌迎曼发布了新的文献求助10
16秒前
22秒前
23秒前
Cloud发布了新的文献求助20
24秒前
弦和完成签到,获得积分10
25秒前
郭奕廷完成签到,获得积分10
25秒前
漫山完成签到,获得积分10
28秒前
124发布了新的文献求助10
28秒前
30秒前
Akim应助布布采纳,获得10
30秒前
阿肯李发布了新的文献求助10
31秒前
32秒前
CodeCraft应助tidongzhiwu采纳,获得10
33秒前
34秒前
Jjj发布了新的文献求助10
34秒前
MX001完成签到,获得积分10
34秒前
露西发布了新的文献求助30
35秒前
36秒前
杨春天发布了新的文献求助10
38秒前
小科比完成签到,获得积分10
38秒前
39秒前
WYY发布了新的文献求助10
39秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475587
求助须知:如何正确求助?哪些是违规求助? 3067456
关于积分的说明 9104167
捐赠科研通 2758955
什么是DOI,文献DOI怎么找? 1513845
邀请新用户注册赠送积分活动 699823
科研通“疑难数据库(出版商)”最低求助积分说明 699197