Cuproptosis is a novel cell death dependent on mitochondrial respiration and regulated by copper. While the study of it is mainly focused on tumor therapy, in the present study, two key cuproptosis-related genes, ferredoxin (FDX1) and dihydrolipoamide S-acetyltransferase (DLAT) homologs (designated as CgFDX1 and CgDLAT), were identified from Crassostrea gigas. CgFDX1 has a Fer2 domain with a 2Fe-2S cluster forming a unique ferredoxin. CgDLAT is composed of a biotin_lipoyl domain, an E3-binding domain, and a 2-oxoacid_dh domain. CgFDX1 and CgDLAT mRNA were expressed in all the examined tissues. After elesclomol treatment, both mRNA and protein expressions of them were reduced in the hemocytes. The mortality rate of the hemocytes increased significantly, and the hemocytes were accompanied with noticeable adhesive abnormalities and heightened secretion after elesclomol treatment. Additionally, the accumulation or depletion of actin was observed in the hemocytes. The integrity of the double membrane structure of the mitochondria was compromised, and the organization of mitochondrial cristae was disrupted. The contents of copper, malondialdehyde (MDA), pyruvic acid and mitoSOX as well as the ratio of cells with low mitochondrial potential increased significantly in the hemocytes upon elesclomol treatment and the content of citric acid decreased significantly. These findings suggest the potential presence of cuproptosis in oysters and its activation mechanism is relatively conserved in evolution.