In recent years, thermal interface materials (TIMs) have garnered increasing attention in the field of thermal management for electronic devices. By effectively bridging the gap between electronic components and heat sinks, these materials significantly enhance heat transfer efficiency. This paper systematically reviews and analyzes the mechanisms, and the influencing factors associated with TIMs composed of graphene, carbon nanotubes, MXene, boron nitride compounds, and metal nanowires over recent years. Additionally, it delves into the challenges faced by these materials and explores its future research directions in thermal management. Future research endeavors are anticipated to focus on innovative designs for thermal conductivity networks in order to achieve further enhancements in the TIMs performance, ultimately paving the way for their practical application and commercialization.