荒地-城市界面
点火系统
环境科学
粒子(生态学)
毒物控制
野火扑灭
防火
工程类
环境卫生
土木工程
环境资源管理
航空航天工程
医学
地质学
海洋学
作者
Kaifeng Wang,Supan Wang,Xinyan Huang
摘要
ABSTRACT The hot‐particle ignition is a common cause of wildland and building fires. This study investigates the ignition of three typical fuels (straw, pine needles, and cotton) in the wildland‐urban interface (WUI) by a hot metal particle of different temperatures and void ratios. In the absence of wind, the ignition of cotton is the easiest, where a flame occurs directly without clear smoldering. As the particle becomes hollow, the required minimum particle temperature for igniting cotton becomes smaller, because of a longer contact time between particle and fuel surface. Once ignited, the flaming of cotton is the weakest, with a mass loss of less than 25% because of an intensive charring. The burning of straw and pine needles is intense, with a large flame height and very little residue. Materials with finer and thinner structure like cotton are easy to initiate a flame by a hot particle while hard to sustain smoldering ignition. The hollow‐structure or large‐porosity materials like straw are prone to smoldering ignition under a weaker spot heating source. The fast‐cooling void particles cannot induce a smoldering ignition of all three WUI fuels, because smoldering ignition requires a longer effective heating duration. This study helps understand the ignition propensity of WUI fuels by a hot particle and the subsequent flame‐spread and burning process, which supports the fire protection design for WUI communities.
科研通智能强力驱动
Strongly Powered by AbleSci AI