Fuzzy Flocking Control for Multi-Agents Trapped in Dynamic Equilibrium Under Multiple Obstacles

植绒(纹理) 模糊逻辑 计算机科学 控制理论(社会学) 数学 控制(管理) 人工智能 物理 量子力学
作者
Weibin Liang,Xiyan Sun,Yuanfa Ji,Xinyi Liu,Jianhui Wu,Zhongxi He
出处
期刊:Machines [Multidisciplinary Digital Publishing Institute]
卷期号:13 (2): 119-119
标识
DOI:10.3390/machines13020119
摘要

The Olfati-Saber flocking (OSF) algorithm is widely used in multi-agent flocking control due to its simplicity and effectiveness. However, this algorithm is prone to trapping multi-agents in dynamic equilibrium under multiple obstacles, and dynamic equilibrium is a key technical issue that needs to be addressed in multi-agent flocking control. To overcome this problem, we propose a dynamic equilibrium judgment rule and design a fuzzy flocking control (FFC) algorithm. In this algorithm, the expected velocity is divided into fuzzy expected velocity and projected expected velocity. The fuzzy expected velocity is designed to make the agent escape from the dynamic equilibrium, and the projected expected velocity is designed to tow the agent, bypassing the obstacles. Meanwhile, the sensing radius of the agent is divided into four subregions, and a nonnegative subsection function is designed to adjust the attractive/repulsive potentials in these subregions. In addition, the virtual leader is designed to guide the agent in achieving group goal following. Finally, the experimental results show that multi-agents can escape from dynamic equilibrium and bypass obstacles at a faster velocity, and the minimum distance between them is consistently greater than the minimum safe distance under complex environments in the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助开朗孤兰采纳,获得10
刚刚
小二郎应助kook采纳,获得10
1秒前
Hello应助玛尼采纳,获得10
1秒前
彭于晏应助CCCC采纳,获得10
1秒前
yujieshi发布了新的文献求助10
1秒前
天天快乐应助Victor采纳,获得10
1秒前
lilia完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
华仔应助lazydoggy采纳,获得10
3秒前
Erin完成签到,获得积分10
4秒前
4秒前
爆米花应助阿巴阿巴采纳,获得10
5秒前
5秒前
5秒前
Mkstar完成签到,获得积分10
6秒前
8秒前
tina关注了科研通微信公众号
8秒前
9秒前
丘比特应助Javari采纳,获得10
9秒前
虚心的爆米花完成签到,获得积分10
9秒前
Emily完成签到 ,获得积分10
9秒前
10秒前
a61完成签到,获得积分10
11秒前
乐乐应助cun采纳,获得10
12秒前
z_king_d_23发布了新的文献求助10
13秒前
zhang狗子发布了新的文献求助10
13秒前
汉堡包应助ambition采纳,获得10
15秒前
Victor发布了新的文献求助10
15秒前
酷酷发布了新的文献求助10
15秒前
努力熊熊完成签到,获得积分10
15秒前
16秒前
17秒前
orixero应助camellia采纳,获得10
17秒前
陈梦娇发布了新的文献求助10
18秒前
小蘑菇应助科研怪采纳,获得10
19秒前
李健应助古乙丁三雨采纳,获得10
20秒前
CipherSage应助zhang狗子采纳,获得10
21秒前
Victor完成签到,获得积分20
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732331
求助须知:如何正确求助?哪些是违规求助? 3276613
关于积分的说明 9997784
捐赠科研通 2992192
什么是DOI,文献DOI怎么找? 1642047
邀请新用户注册赠送积分活动 780144
科研通“疑难数据库(出版商)”最低求助积分说明 748701