Framework for adoption of generative AI for information search of retail products and services

业务 零售额 生成语法 营销 生成模型 计算机科学 人工智能
作者
Astha Sanjeev Gupta,Jaydeep Mukherjee
出处
期刊:International Journal of Retail & Distribution Management [Emerald (MCB UP)]
标识
DOI:10.1108/ijrdm-05-2024-0203
摘要

Purpose Generative artificial intelligence (GAI) can disrupt how consumers search for information on retail products/services online by reducing information overload. However, the risk associated with GAI is high, and its widespread adoption for product/service information search purposes is uncertain. This study examined psychological drivers that impact consumer adoption of GAI platforms for retail information search. Design/methodology/approach We conducted 31 in-depth, semi-structured interviews with the lead GAI users regarding product/service information search. The data were analysed using a grounded theory paradigm and thematic analysis. Findings Results show that consumers experience uncertainty about GAI’s functioning. Their trust in GAI impacts the adoption and usage of this technology for information search. GAI provides unique settings to investigate potential additional factors, leveraging UTAUT as a theoretical basis. This study identified three overarching themes – technology characteristics, technology readiness and information characteristics – as possible drivers of adoption. Originality/value Consumers seek exhaustive and reliable information for purchase decisions. Due to the abundance of online information, they experience information overload. GAI platforms reduce information overload by providing synthesized and customized product/service search results. However, its reliability, trustworthiness and accuracy have been questioned. The functioning of GAI is opaque; the popular technology adoption model such as UTAUT is general and is unlikely to explain in totality the adoption and usage of GAI. Hence, this research provides the adoption drivers for this unique technology context. It identifies the determinants/antecedents of relevant UTAUT variables and develops an integrated conceptual model explaining GAI adoption for retail information search.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yx_cheng完成签到,获得积分0
2秒前
lee完成签到 ,获得积分10
2秒前
Yang发布了新的文献求助10
3秒前
3秒前
乐乐应助帅气啊吴采纳,获得10
3秒前
嗨翻的冰激凌完成签到 ,获得积分10
5秒前
任蛹完成签到,获得积分10
6秒前
冷艳薯片完成签到,获得积分10
7秒前
donson完成签到,获得积分10
7秒前
8秒前
Ted完成签到,获得积分10
8秒前
SweetyTian完成签到,获得积分10
9秒前
眯眯眼的衬衫应助阿九采纳,获得10
10秒前
华仔应助SweetyTian采纳,获得10
11秒前
Liming发布了新的文献求助10
13秒前
半颗糖完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
慕青应助鞭霆采纳,获得30
15秒前
yj91完成签到,获得积分10
18秒前
dynamo发布了新的文献求助50
19秒前
shamo发布了新的文献求助10
19秒前
20秒前
20秒前
rebeycca完成签到,获得积分10
22秒前
josy应助孙梦涵采纳,获得10
24秒前
xiuwenli发布了新的文献求助10
25秒前
科目三应助Liming采纳,获得10
26秒前
久久丫发布了新的文献求助10
28秒前
31秒前
无1122完成签到,获得积分10
34秒前
35秒前
ZZICU完成签到,获得积分10
36秒前
39秒前
39秒前
41秒前
43秒前
田様应助shamo采纳,获得20
44秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Natural Fractures in Coal 300
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387455
求助须知:如何正确求助?哪些是违规求助? 3000207
关于积分的说明 8789896
捐赠科研通 2686064
什么是DOI,文献DOI怎么找? 1471442
科研通“疑难数据库(出版商)”最低求助积分说明 680272
邀请新用户注册赠送积分活动 673062