Multimodal Fusion Transformer for Remote Sensing Image Classification

计算机科学 变压器 人工智能 卷积神经网络 CLs上限 编码器 上下文图像分类 模式识别(心理学) 安全性令牌 源代码 机器学习 图像(数学) 量子力学 医学 操作系统 验光服务 物理 电压 计算机安全
作者
Swalpa Kumar Roy,Ankur Deria,Danfeng Hong,Behnood Rasti,Antonio Plaza,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-20 被引量:212
标识
DOI:10.1109/tgrs.2023.3286826
摘要

Vision transformers (ViTs) have been trending in image classification tasks due to their promising performance when compared to convolutional neural networks (CNNs). As a result, many researchers have tried to incorporate ViTs in hyperspectral image (HSI) classification tasks. To achieve satisfactory performance, close to that of CNNs, transformers need fewer parameters. ViTs and other similar transformers use an external classification (CLS) token which is randomly initialized and often fails to generalize well, whereas other sources of multimodal datasets, such as light detection and ranging (LiDAR) offer the potential to improve these models by means of a CLS. In this paper, we introduce a new multimodal fusion transformer (MFT) network which comprises a multihead cross patch attention (mCrossPA) for HSI land-cover classification. Our mCrossPA utilizes other sources of complementary information in addition to the HSI in the transformer encoder to achieve better generalization. The concept of tokenization is used to generate CLS and HSI patch tokens, helping to learn a {distinctive representation} in a reduced and hierarchical feature space. Extensive experiments are carried out on {widely used benchmark} datasets {i.e.,} the University of Houston, Trento, University of Southern Mississippi Gulfpark (MUUFL), and Augsburg. We compare the results of the proposed MFT model with other state-of-the-art transformers, classical CNNs, and conventional classifiers models. The superior performance achieved by the proposed model is due to the use of multihead cross patch attention. The source code will be made available publicly at \url{https://github.com/AnkurDeria/MFT}.}
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ava应助冷傲迎梦采纳,获得10
1秒前
斯文败类应助个性的薯片采纳,获得10
2秒前
牛牛眉目发布了新的文献求助10
2秒前
2秒前
李爱国应助xusuizi采纳,获得10
2秒前
特例独行的jian完成签到,获得积分10
3秒前
4秒前
石金胜完成签到,获得积分10
5秒前
6秒前
6秒前
醉熏的天薇完成签到,获得积分10
6秒前
csy发布了新的文献求助10
7秒前
英姑应助壮观的菠萝采纳,获得10
9秒前
Akim应助tcf采纳,获得10
9秒前
11秒前
Owen应助ww采纳,获得10
11秒前
hazhuxixi发布了新的文献求助10
11秒前
12秒前
Ezio_sunhao完成签到,获得积分10
12秒前
陈希铭发布了新的文献求助10
13秒前
光的本质完成签到,获得积分20
14秒前
zero完成签到 ,获得积分10
15秒前
佳佳发布了新的文献求助10
16秒前
666应助Lee采纳,获得10
16秒前
16秒前
xusuizi发布了新的文献求助10
16秒前
18秒前
qxy完成签到 ,获得积分10
18秒前
20秒前
20秒前
zuo完成签到,获得积分10
20秒前
专注乌冬面完成签到,获得积分10
20秒前
牛牛眉目发布了新的文献求助10
21秒前
淡淡的绿柳关注了科研通微信公众号
22秒前
22秒前
23秒前
24秒前
weiwei发布了新的文献求助10
25秒前
笑哦发布了新的文献求助10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388