Rotating machinery fault-induced vibration signal modulation effects: A review with mechanisms, extraction methods and applications for diagnosis

调制(音乐) 信号(编程语言) 特征提取 断层(地质) 计算机科学 振动 特征(语言学) 信号处理 模式识别(心理学) 工程类 电子工程 人工智能 控制工程 声学 数字信号处理 物理 哲学 地质学 地震学 程序设计语言 语言学
作者
Peng Zhou,Shiqian Chen,Qingbo He,Dong Wang,Zhike Peng
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:200: 110489-110489 被引量:8
标识
DOI:10.1016/j.ymssp.2023.110489
摘要

Rotating machinery faults can induce characteristic modulation effects in a vibration signal, and their diagnosis can thus be conducted by extracting fault-induced modulation features. To be specific, such a diagnostic strategy typically involves three main aspects, i.e., fault-induced signal modulation mechanisms, modulation feature extraction methods and applications for diagnosis. To date, the research works on these three aspects all achieved great progresses. A systematic review is thus urgently needed to summarize these achievements, and guide their future directions and developments. This paper aims to fill these gaps and address the needs. Three kinds of typical modulation effects induced by transmission elements are firstly reviewed and summarized. For each kind of modulation effects, a representative phenomenological model is given to formulate and illustrate the relationship between fault-induced modulation patterns and characteristic spectral distributions. As the primary tools to extract signal modulation features, different kinds of time-frequency analysis and signal decomposition methods are then systematically reviewed, including their up-to-date developments, classifications and application scenarios. Some representative works of vibration signal modulation feature extraction-based fault diagnosis are finally introduced along with several typical examples. Based on current research achievements, two potential topics for the future developments of vibration-based diagnostic techniques are the quantitative study of fault feature evolution patterns and the development of more robust and efficient feature extraction algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮的饼干完成签到,获得积分10
2秒前
大模型应助Daisy采纳,获得10
3秒前
开心果完成签到,获得积分10
4秒前
我要发sci发布了新的文献求助10
4秒前
fev123完成签到,获得积分10
4秒前
Hou发布了新的文献求助10
5秒前
5秒前
FashionBoy应助背后瑾瑜采纳,获得10
7秒前
科研通AI2S应助ketaman采纳,获得10
7秒前
7秒前
不配.应助科研通管家采纳,获得10
8秒前
不配.应助科研通管家采纳,获得10
8秒前
不配.应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
Endlessway应助科研通管家采纳,获得20
8秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
9秒前
隐形的皮卡丘完成签到 ,获得积分10
10秒前
niu给niu的求助进行了留言
10秒前
南浔完成签到 ,获得积分10
10秒前
11秒前
TJ发布了新的文献求助30
13秒前
14秒前
14秒前
15秒前
小小廖完成签到,获得积分10
18秒前
20秒前
xingyun发布了新的文献求助10
21秒前
执着子骞完成签到,获得积分10
21秒前
22秒前
万能图书馆应助胡豆采纳,获得10
22秒前
25秒前
华仔应助黄垚采纳,获得10
25秒前
夜願完成签到,获得积分10
25秒前
xuanqing发布了新的文献求助10
26秒前
26秒前
了该发布了新的文献求助10
28秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233151
求助须知:如何正确求助?哪些是违规求助? 2879802
关于积分的说明 8212729
捐赠科研通 2547256
什么是DOI,文献DOI怎么找? 1376693
科研通“疑难数据库(出版商)”最低求助积分说明 647682
邀请新用户注册赠送积分活动 623073