已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multivariate air quality time series analysis via a recurrent variational deep learning model

空气质量指数 自编码 多元统计 概率逻辑 时间序列 计算机科学 生成模型 期限(时间) 系列(地层学) 深度学习 环境科学 人工智能 机器学习 气象学 数据挖掘 统计 数学 生成语法 地理 物理 古生物学 生物 量子力学
作者
Cooper Loughlin,Dimitris G. Manolakis,Vinay K. Ingle
标识
DOI:10.1117/12.2663201
摘要

Monitoring of air pollutants across space and time is critical in understanding pollution trends and reporting air quality. The Air Quality Index (AQI) is a tool used to communicate air quality that incorporates atmospheric concentrations of five major pollution indicators: ground-level ozone, particulate matter, carbon monoxide, sulfur dioxide, and nitrogen dioxide. The ability to accurately forecast these concentrations and identify unusual levels is of particular importance. In this work, we develop a generative time series model for air quality indicators and use it for long and short-term probabilistic forecasts. Air quality data are multivariate and exhibit high variability across indicators in both space and time. Marginal indicator distributions are typically skewed and contain substantial zeros, while indicator-wise cross-correlations can be highly non-linear. We find that hourly measurements additionally exhibit substantial temporal cross-correlation, long-term dependence, and daily periodicity. To capture these complexities, we employ a recurrent extension of the variational autoencoder (VAE) to sequential data. The VAE is a generative neural network architecture capable of learning complex, high dimensional manifolds on which data are distributed. Furthermore, recurrent architectures can capture non-linear and long-term temporal qualities of time series data. We train the proposed time series model on historical air quality measurements at multiple locations and demonstrate its ability to capture observed indicator-wise and temporal complexities. We additionally use the trained model to compute probabilistic forecasts and credible intervals of air quality indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
地理汪汪完成签到,获得积分20
2秒前
爱静静应助Amor采纳,获得10
4秒前
Gavin发布了新的文献求助10
5秒前
5秒前
fanfan发布了新的文献求助10
7秒前
任平生完成签到,获得积分10
9秒前
10秒前
chorus发布了新的文献求助10
11秒前
12秒前
852应助zhujun采纳,获得30
12秒前
科目三应助yyxx采纳,获得10
13秒前
ding应助一口吃不下采纳,获得10
13秒前
666给666的求助进行了留言
13秒前
任平生发布了新的文献求助10
14秒前
科研通AI5应助瑞秋采纳,获得10
14秒前
17秒前
大模型应助段大开采纳,获得10
17秒前
哈哈完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
narthon发布了新的文献求助10
23秒前
23秒前
24秒前
25秒前
25秒前
25秒前
26秒前
研友_诺发布了新的文献求助30
27秒前
fox2shj完成签到,获得积分10
28秒前
29秒前
搜集达人应助白华苍松采纳,获得10
29秒前
29秒前
蹦蹦发布了新的文献求助10
30秒前
小唐发布了新的文献求助10
31秒前
31秒前
科研通AI5应助研友_诺采纳,获得10
32秒前
liu完成签到,获得积分10
32秒前
脑洞疼应助欣喜的友易采纳,获得10
33秒前
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555423
求助须知:如何正确求助?哪些是违规求助? 3131069
关于积分的说明 9389939
捐赠科研通 2830532
什么是DOI,文献DOI怎么找? 1556087
邀请新用户注册赠送积分活动 726445
科研通“疑难数据库(出版商)”最低求助积分说明 715750