Multivariate air quality time series analysis via a recurrent variational deep learning model

空气质量指数 自编码 多元统计 概率逻辑 时间序列 计算机科学 生成模型 期限(时间) 系列(地层学) 深度学习 环境科学 人工智能 机器学习 气象学 数据挖掘 统计 数学 生成语法 地理 古生物学 物理 量子力学 生物
作者
Cooper Loughlin,Dimitris G. Manolakis,Vinay K. Ingle
标识
DOI:10.1117/12.2663201
摘要

Monitoring of air pollutants across space and time is critical in understanding pollution trends and reporting air quality. The Air Quality Index (AQI) is a tool used to communicate air quality that incorporates atmospheric concentrations of five major pollution indicators: ground-level ozone, particulate matter, carbon monoxide, sulfur dioxide, and nitrogen dioxide. The ability to accurately forecast these concentrations and identify unusual levels is of particular importance. In this work, we develop a generative time series model for air quality indicators and use it for long and short-term probabilistic forecasts. Air quality data are multivariate and exhibit high variability across indicators in both space and time. Marginal indicator distributions are typically skewed and contain substantial zeros, while indicator-wise cross-correlations can be highly non-linear. We find that hourly measurements additionally exhibit substantial temporal cross-correlation, long-term dependence, and daily periodicity. To capture these complexities, we employ a recurrent extension of the variational autoencoder (VAE) to sequential data. The VAE is a generative neural network architecture capable of learning complex, high dimensional manifolds on which data are distributed. Furthermore, recurrent architectures can capture non-linear and long-term temporal qualities of time series data. We train the proposed time series model on historical air quality measurements at multiple locations and demonstrate its ability to capture observed indicator-wise and temporal complexities. We additionally use the trained model to compute probabilistic forecasts and credible intervals of air quality indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智谷蕊发布了新的文献求助10
1秒前
blue发布了新的文献求助10
1秒前
1秒前
薛定谔的猫完成签到,获得积分10
1秒前
1秒前
谢谢发布了新的文献求助10
2秒前
dearcih完成签到,获得积分10
2秒前
Wone3完成签到 ,获得积分10
2秒前
后陡门的夏天完成签到,获得积分10
2秒前
ikun发布了新的文献求助10
2秒前
3秒前
3秒前
吴彦祖发布了新的文献求助10
3秒前
tw0125完成签到 ,获得积分10
4秒前
忧郁的期待完成签到,获得积分10
4秒前
4秒前
5秒前
隐形曼青应助八月宁静采纳,获得10
5秒前
5秒前
5秒前
TYT发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
柏达发布了新的文献求助10
6秒前
胖子完成签到,获得积分10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
SYLH应助子乔采纳,获得20
7秒前
7秒前
顾矜应助vic303采纳,获得10
7秒前
clientprogram发布了新的文献求助30
8秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009871
求助须知:如何正确求助?哪些是违规求助? 3549812
关于积分的说明 11303839
捐赠科研通 3284342
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886393
科研通“疑难数据库(出版商)”最低求助积分说明 811406