A Robust Feature Downsampling Module for Remote-Sensing Visual Tasks

增采样 计算机科学 特征(语言学) 稳健性(进化) 人工智能 分割 特征提取 子网 模式识别(心理学) 计算机视觉 图像(数学) 基因 化学 哲学 生物化学 语言学 计算机安全
作者
Wei Lu,Si-Bao Chen,Jin Tang,Chris Ding,Bin Luo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:27
标识
DOI:10.1109/tgrs.2023.3282048
摘要

Remote sensing (RS) images present unique challenges for computer vision due to lower resolution, smaller objects, and fewer features. Mainstream backbone networks show promising results for traditional visual tasks. However, they use convolution to reduce feature map dimensionality, which can result in information loss for small objects in RS images and decreased performance. To address this problem, we propose a new and universal downsampling module named Robust Feature Downsampling (RFD). RFD fuses multiple feature maps extracted by different downsampling techniques, creating a more robust feature map with a complementary set of features. Leveraging this, we overcome the limitations of conventional convolutional downsampling, resulting in more accurate and robust analysis of RS images. We develop two versions of RFD module, Shallow RFD (SRFD) and Deep RFD (DRFD), tailored to adapt to different stages of feature capture and improve feature robustness. We replace the downsampling layers of existing mainstream backbones with RFD module and conduct comparative experiments on several public RS image datasets. The results show significant improvements compared to baseline approaches in RS image classification, object detection, and semantic segmentation. Specifically, our RFD module achieved an average performance gain of 1.5% on NWPU-RESISC45 classification dataset without utilizing any additional pretraining data, resulting in state-of-the-art performance on this dataset. Moreover, in detection and segmentation tasks on DOTA and iSAID datasets, our RFD module outperforms the baseline approaches by 2-7% when utilizing pretraining data from NWPU-RESISC45. These results highlight the value of RFD module in enhancing the performance of RS visual tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒桥完成签到,获得积分10
刚刚
刚刚
淡定的萝莉完成签到,获得积分10
刚刚
123发布了新的文献求助10
1秒前
FFFFF完成签到,获得积分10
3秒前
现代应助娜娜子采纳,获得30
3秒前
5秒前
undo完成签到,获得积分10
6秒前
zoe666应助lxf_123采纳,获得10
6秒前
6秒前
Small-violet发布了新的文献求助10
6秒前
鲤鱼懿轩发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
上官若男应助欧博采纳,获得10
7秒前
NexusExplorer应助路明非采纳,获得10
9秒前
10秒前
11秒前
科研通AI5应助悦耳的初瑶采纳,获得10
11秒前
12秒前
13秒前
123完成签到,获得积分10
13秒前
changping应助科研通管家采纳,获得10
13秒前
YFF发布了新的文献求助10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
Eternity2025应助科研通管家采纳,获得20
13秒前
changping应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
一叶知秋应助科研通管家采纳,获得150
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
changping应助科研通管家采纳,获得10
14秒前
路明非完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5156773
求助须知:如何正确求助?哪些是违规求助? 4352261
关于积分的说明 13551247
捐赠科研通 4195353
什么是DOI,文献DOI怎么找? 2301057
邀请新用户注册赠送积分活动 1300880
关于科研通互助平台的介绍 1246056