A Robust Feature Downsampling Module for Remote-Sensing Visual Tasks

增采样 计算机科学 特征(语言学) 稳健性(进化) 人工智能 分割 特征提取 子网 模式识别(心理学) 计算机视觉 图像(数学) 基因 化学 哲学 生物化学 语言学 计算机安全
作者
Wei Lu,Si-Bao Chen,Jin Tang,Chris Ding,Bin Luo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:4
标识
DOI:10.1109/tgrs.2023.3282048
摘要

Remote sensing (RS) images present unique challenges for computer vision due to lower resolution, smaller objects, and fewer features. Mainstream backbone networks show promising results for traditional visual tasks. However, they use convolution to reduce feature map dimensionality, which can result in information loss for small objects in RS images and decreased performance. To address this problem, we propose a new and universal downsampling module named Robust Feature Downsampling (RFD). RFD fuses multiple feature maps extracted by different downsampling techniques, creating a more robust feature map with a complementary set of features. Leveraging this, we overcome the limitations of conventional convolutional downsampling, resulting in more accurate and robust analysis of RS images. We develop two versions of RFD module, Shallow RFD (SRFD) and Deep RFD (DRFD), tailored to adapt to different stages of feature capture and improve feature robustness. We replace the downsampling layers of existing mainstream backbones with RFD module and conduct comparative experiments on several public RS image datasets. The results show significant improvements compared to baseline approaches in RS image classification, object detection, and semantic segmentation. Specifically, our RFD module achieved an average performance gain of 1.5% on NWPU-RESISC45 classification dataset without utilizing any additional pretraining data, resulting in state-of-the-art performance on this dataset. Moreover, in detection and segmentation tasks on DOTA and iSAID datasets, our RFD module outperforms the baseline approaches by 2-7% when utilizing pretraining data from NWPU-RESISC45. These results highlight the value of RFD module in enhancing the performance of RS visual tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1huiqina发布了新的文献求助30
刚刚
1秒前
复杂大象完成签到,获得积分10
3秒前
独特觅翠完成签到 ,获得积分10
7秒前
9秒前
kkk驳回了iNk应助
11秒前
bkagyin应助zoe采纳,获得10
12秒前
12秒前
13秒前
充电宝应助Master采纳,获得10
14秒前
研友_VZG7GZ应助YY采纳,获得30
16秒前
17秒前
20秒前
20秒前
高挑的幼翠完成签到 ,获得积分10
21秒前
着急的白羊完成签到,获得积分10
21秒前
冷酷的向日葵完成签到,获得积分10
22秒前
23秒前
24秒前
CodeCraft应助秋蚓采纳,获得10
26秒前
锦瑟发布了新的文献求助10
26秒前
26秒前
斯文败类应助你好啊采纳,获得10
27秒前
开心发布了新的文献求助10
27秒前
29秒前
火星上盼山完成签到,获得积分10
30秒前
Master发布了新的文献求助10
32秒前
spss2005完成签到,获得积分20
33秒前
lql发布了新的文献求助10
33秒前
36秒前
luckyd完成签到 ,获得积分0
37秒前
斯文的道罡完成签到,获得积分10
37秒前
星辰大海应助小马到处跑采纳,获得10
38秒前
38秒前
spss2005发布了新的文献求助10
39秒前
40秒前
linpa完成签到 ,获得积分10
41秒前
柯仇天完成签到,获得积分10
42秒前
richardzhang1984完成签到 ,获得积分10
43秒前
Master完成签到,获得积分10
43秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137638
求助须知:如何正确求助?哪些是违规求助? 2788565
关于积分的说明 7787590
捐赠科研通 2444902
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023