A Robust Feature Downsampling Module for Remote-Sensing Visual Tasks

增采样 计算机科学 特征(语言学) 稳健性(进化) 人工智能 分割 特征提取 子网 模式识别(心理学) 计算机视觉 图像(数学) 基因 化学 哲学 生物化学 语言学 计算机安全
作者
Wei Lu,Si-Bao Chen,Jin Tang,Chris Ding,Bin Luo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:58
标识
DOI:10.1109/tgrs.2023.3282048
摘要

Remote sensing (RS) images present unique challenges for computer vision due to lower resolution, smaller objects, and fewer features. Mainstream backbone networks show promising results for traditional visual tasks. However, they use convolution to reduce feature map dimensionality, which can result in information loss for small objects in RS images and decreased performance. To address this problem, we propose a new and universal downsampling module named Robust Feature Downsampling (RFD). RFD fuses multiple feature maps extracted by different downsampling techniques, creating a more robust feature map with a complementary set of features. Leveraging this, we overcome the limitations of conventional convolutional downsampling, resulting in more accurate and robust analysis of RS images. We develop two versions of RFD module, Shallow RFD (SRFD) and Deep RFD (DRFD), tailored to adapt to different stages of feature capture and improve feature robustness. We replace the downsampling layers of existing mainstream backbones with RFD module and conduct comparative experiments on several public RS image datasets. The results show significant improvements compared to baseline approaches in RS image classification, object detection, and semantic segmentation. Specifically, our RFD module achieved an average performance gain of 1.5% on NWPU-RESISC45 classification dataset without utilizing any additional pretraining data, resulting in state-of-the-art performance on this dataset. Moreover, in detection and segmentation tasks on DOTA and iSAID datasets, our RFD module outperforms the baseline approaches by 2-7% when utilizing pretraining data from NWPU-RESISC45. These results highlight the value of RFD module in enhancing the performance of RS visual tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助pattrick采纳,获得10
1秒前
挞挞不要胖完成签到 ,获得积分10
1秒前
平常兰完成签到,获得积分10
1秒前
1秒前
1秒前
Return应助影1采纳,获得10
2秒前
调皮冷梅完成签到 ,获得积分10
2秒前
zzzxhhr完成签到,获得积分10
2秒前
梦二完成签到,获得积分10
2秒前
小蘑菇应助樱桃采纳,获得10
3秒前
精明的鑫发布了新的文献求助10
3秒前
可爱的函函应助hhhhhy采纳,获得10
3秒前
jasmine0211发布了新的文献求助10
4秒前
高挑的紫安完成签到 ,获得积分10
4秒前
彭于晏应助yy32323采纳,获得10
4秒前
苗一夫发布了新的文献求助10
4秒前
aayy发布了新的文献求助10
5秒前
田様应助柚子采纳,获得10
5秒前
6秒前
pu完成签到 ,获得积分10
6秒前
香蕉觅云应助yaya采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
mouxia发布了新的文献求助10
9秒前
Rocky_Qi发布了新的文献求助10
9秒前
9秒前
SSS完成签到,获得积分10
10秒前
熬夜波比应助shaco采纳,获得10
11秒前
二豆子0完成签到,获得积分10
11秒前
ZYYYY发布了新的文献求助10
12秒前
12秒前
汉堡包应助111采纳,获得10
12秒前
12秒前
pluto应助阔达犀牛采纳,获得10
12秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
Twonej应助一分儿采纳,获得30
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049