亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Robust Feature Downsampling Module for Remote-Sensing Visual Tasks

增采样 计算机科学 特征(语言学) 稳健性(进化) 人工智能 分割 特征提取 子网 模式识别(心理学) 计算机视觉 图像(数学) 基因 化学 哲学 生物化学 语言学 计算机安全
作者
Wei Lu,Si-Bao Chen,Jin Tang,Chris Ding,Bin Luo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:58
标识
DOI:10.1109/tgrs.2023.3282048
摘要

Remote sensing (RS) images present unique challenges for computer vision due to lower resolution, smaller objects, and fewer features. Mainstream backbone networks show promising results for traditional visual tasks. However, they use convolution to reduce feature map dimensionality, which can result in information loss for small objects in RS images and decreased performance. To address this problem, we propose a new and universal downsampling module named Robust Feature Downsampling (RFD). RFD fuses multiple feature maps extracted by different downsampling techniques, creating a more robust feature map with a complementary set of features. Leveraging this, we overcome the limitations of conventional convolutional downsampling, resulting in more accurate and robust analysis of RS images. We develop two versions of RFD module, Shallow RFD (SRFD) and Deep RFD (DRFD), tailored to adapt to different stages of feature capture and improve feature robustness. We replace the downsampling layers of existing mainstream backbones with RFD module and conduct comparative experiments on several public RS image datasets. The results show significant improvements compared to baseline approaches in RS image classification, object detection, and semantic segmentation. Specifically, our RFD module achieved an average performance gain of 1.5% on NWPU-RESISC45 classification dataset without utilizing any additional pretraining data, resulting in state-of-the-art performance on this dataset. Moreover, in detection and segmentation tasks on DOTA and iSAID datasets, our RFD module outperforms the baseline approaches by 2-7% when utilizing pretraining data from NWPU-RESISC45. These results highlight the value of RFD module in enhancing the performance of RS visual tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Timelapse发布了新的文献求助10
2秒前
14秒前
黑摄会阿Fay完成签到,获得积分10
15秒前
BowieHuang应助Timelapse采纳,获得10
19秒前
甜橙完成签到 ,获得积分10
21秒前
21秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
NattyPoe应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得20
29秒前
32秒前
852应助一碗鱼采纳,获得10
45秒前
wanci应助andrele采纳,获得10
49秒前
50秒前
量子星尘发布了新的文献求助10
51秒前
58秒前
一碗鱼发布了新的文献求助10
1分钟前
1分钟前
theo完成签到 ,获得积分10
1分钟前
糕冷草莓完成签到,获得积分10
1分钟前
英姑应助一碗鱼采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
一碗鱼发布了新的文献求助10
2分钟前
一碗鱼完成签到,获得积分10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
小糊涂仙儿完成签到 ,获得积分10
3分钟前
3分钟前
Isabelle发布了新的文献求助10
3分钟前
Timelapse发布了新的文献求助10
3分钟前
ZhiyunXu2012完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
惘然111222发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772792
求助须知:如何正确求助?哪些是违规求助? 5602544
关于积分的说明 15430087
捐赠科研通 4905627
什么是DOI,文献DOI怎么找? 2639585
邀请新用户注册赠送积分活动 1587478
关于科研通互助平台的介绍 1542423