SLRFormer: Continuous Sign Language Recognition Based on Vision Transformer

手语 计算机科学 变压器 过度拟合 语音识别 特征提取 人工智能 机器人 手势 手势识别 语言模型 计算机视觉 自然语言处理 人工神经网络 工程类 语言学 哲学 电气工程 电压
作者
Feng Xiao,Ruyu Liu,Tiantian Yuan,Zhimin Fan,Jiajia Wang,Jianhua Zhang
标识
DOI:10.1109/aciiw57231.2022.10086026
摘要

Human-Robot interaction (HRI) usually focuses on the interaction between normal people and robots, ignoring the needs of deaf-mute people. Deaf-mute individuals utilize sign language to communicate their thoughts and emotions. Therefore, continuous sign language recognition (CSLR) can be introduced to the robot for communicating with deaf-mute people. However, the mainstream CSLR, which consists of two main modules, i.e., visual feature extraction and contextual modeling, has several problems. Visual features are usually extracted frame-by-frame and lack global contextual information, which results in a crucial impact on subsequent context modeling. In addition, we discovered a substantial degree of redundancy in the sign language data, which can significantly slow down model training and exacerbate the problem of model overfitting. To solve these problems, in this paper, we propose a novel vision transformer-based sign language recognition network combined with the off-frame extraction (KFE) module for accurate end-to-end recognition of input video sequences. Two CSLR benchmarks, TJUT-SLRT and USTC-CSL, have been the subject of our experiments. The outcomes of our experiments illustrate the efficacy of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助锂离子采纳,获得10
1秒前
1秒前
1秒前
1秒前
ven发布了新的文献求助30
1秒前
深情安青应助科研通管家采纳,获得30
2秒前
2秒前
hetty完成签到,获得积分10
2秒前
zhonglv7应助科研通管家采纳,获得10
2秒前
杨杨应助科研通管家采纳,获得10
2秒前
墨琼琼应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
2秒前
科目三应助lmr采纳,获得10
2秒前
2秒前
情怀应助科研通管家采纳,获得10
3秒前
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
成就的咖啡完成签到,获得积分10
3秒前
3秒前
3秒前
在水一方应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
深情安青应助科研通管家采纳,获得30
4秒前
4秒前
HLS应助科研通管家采纳,获得10
5秒前
zhonglv7应助科研通管家采纳,获得10
5秒前
lizishu应助1212采纳,获得20
5秒前
杨杨应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
墨琼琼应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776350
求助须知:如何正确求助?哪些是违规求助? 5628713
关于积分的说明 15442059
捐赠科研通 4908468
什么是DOI,文献DOI怎么找? 2641217
邀请新用户注册赠送积分活动 1589167
关于科研通互助平台的介绍 1543851