清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Battery health prognostic with sensor-free differential temperature voltammetry reconstruction and capacity estimation based on multi-domain adaptation

电池(电) 差速器(机械装置) 预言 计算机科学 领域(数学分析) 算法 控制理论(社会学) 数据挖掘 数学 人工智能 工程类 物理 数学分析 功率(物理) 航空航天工程 控制(管理) 量子力学
作者
Yunhong Che,Søren Byg Vilsen,Jinhao Meng,Xin Sui,Remus Teodorescu
出处
期刊:eTransportation [Elsevier BV]
卷期号:17: 100245-100245 被引量:26
标识
DOI:10.1016/j.etran.2023.100245
摘要

Battery health prognostic is a key part of battery management used to ensure safe and optimal usage. A novel method for end-to-end sensor-free differential temperature voltammetry reconstruction and state of health estimation based on the multi-domain adaptation is proposed in this paper. Firstly, the partial charging or discharging curve is used to reconstruct the differential temperature curve, removing the requirement for the temperature sensor measurement. The partial differential capacity curve and the reconstructed differential temperature curve are input and then used in an end-to-end state of health estimation. Finally, to reduce the domain discrepancy between the source and target domains, the maximum mean discrepancy is included as an additional loss to improve the accuracy of both differential temperature curve reconstruction and state of health estimation with unlabeled data from the testing battery. Four data sets containing both experimental data and public data with different battery chemistry and formats, current modes and rates, and external conditions are used for the verification and evaluation. Experimental results indicate the proposed method can satisfy health prognostics under different scenarios with mean errors of less than 0.067 °C/V for differential temperature curves and 1.78% for the state of health. The results show that the error for the differential temperature curve reconstruction is reduced by more than 20% and the error for the state of health estimation is reduced by more than 47% of the proposed method compared to the conventional data-driven method without transfer learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JESSE发布了新的文献求助10
7秒前
孟寐以求完成签到 ,获得积分10
10秒前
fabea完成签到,获得积分10
13秒前
江三村完成签到 ,获得积分0
17秒前
28秒前
Arvin发布了新的文献求助10
29秒前
32秒前
萧萧完成签到,获得积分10
42秒前
48秒前
crystaler完成签到 ,获得积分10
53秒前
Arvin完成签到,获得积分10
54秒前
1分钟前
samuel发布了新的文献求助10
1分钟前
1中蓝完成签到 ,获得积分10
1分钟前
1分钟前
大医仁心完成签到 ,获得积分10
1分钟前
儒雅黑裤完成签到 ,获得积分10
1分钟前
df完成签到 ,获得积分10
1分钟前
samuel完成签到,获得积分10
1分钟前
q792309106发布了新的文献求助10
1分钟前
1分钟前
摸鱼主编magazine完成签到,获得积分10
1分钟前
jlwang发布了新的文献求助10
1分钟前
耳机单蹦完成签到,获得积分10
1分钟前
淡出发布了新的文献求助10
1分钟前
1分钟前
常有李发布了新的文献求助10
1分钟前
9527完成签到,获得积分10
2分钟前
华仔应助q792309106采纳,获得10
2分钟前
lorentzh完成签到,获得积分10
2分钟前
夏天完成签到 ,获得积分10
2分钟前
淡出完成签到,获得积分20
2分钟前
打打应助科研通管家采纳,获得10
2分钟前
jlwang完成签到,获得积分10
2分钟前
zlw121完成签到 ,获得积分10
2分钟前
高兴的平露完成签到 ,获得积分10
2分钟前
MM完成签到 ,获得积分10
2分钟前
Akim应助抱薪救火采纳,获得10
3分钟前
徐团伟完成签到 ,获得积分10
3分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5211911
求助须知:如何正确求助?哪些是违规求助? 4388251
关于积分的说明 13663692
捐赠科研通 4248578
什么是DOI,文献DOI怎么找? 2331051
邀请新用户注册赠送积分活动 1328776
关于科研通互助平台的介绍 1281955