Battery health prognostic with sensor-free differential temperature voltammetry reconstruction and capacity estimation based on multi-domain adaptation

电池(电) 差速器(机械装置) 预言 计算机科学 领域(数学分析) 算法 控制理论(社会学) 数据挖掘 数学 人工智能 工程类 物理 数学分析 功率(物理) 航空航天工程 控制(管理) 量子力学
作者
Yunhong Che,Søren Byg Vilsen,Jinhao Meng,Xin Sui,Remus Teodorescu
出处
期刊:eTransportation [Elsevier]
卷期号:17: 100245-100245 被引量:26
标识
DOI:10.1016/j.etran.2023.100245
摘要

Battery health prognostic is a key part of battery management used to ensure safe and optimal usage. A novel method for end-to-end sensor-free differential temperature voltammetry reconstruction and state of health estimation based on the multi-domain adaptation is proposed in this paper. Firstly, the partial charging or discharging curve is used to reconstruct the differential temperature curve, removing the requirement for the temperature sensor measurement. The partial differential capacity curve and the reconstructed differential temperature curve are input and then used in an end-to-end state of health estimation. Finally, to reduce the domain discrepancy between the source and target domains, the maximum mean discrepancy is included as an additional loss to improve the accuracy of both differential temperature curve reconstruction and state of health estimation with unlabeled data from the testing battery. Four data sets containing both experimental data and public data with different battery chemistry and formats, current modes and rates, and external conditions are used for the verification and evaluation. Experimental results indicate the proposed method can satisfy health prognostics under different scenarios with mean errors of less than 0.067 °C/V for differential temperature curves and 1.78% for the state of health. The results show that the error for the differential temperature curve reconstruction is reduced by more than 20% and the error for the state of health estimation is reduced by more than 47% of the proposed method compared to the conventional data-driven method without transfer learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mbf发布了新的文献求助10
1秒前
1秒前
2秒前
丘比特应助yyr采纳,获得10
2秒前
2秒前
2秒前
会撒娇的诺言完成签到,获得积分10
2秒前
Emmmm完成签到,获得积分10
3秒前
5秒前
CodeCraft应助TYF采纳,获得10
6秒前
高艳慧发布了新的文献求助10
7秒前
lemon完成签到,获得积分10
10秒前
10秒前
科研一号完成签到 ,获得积分10
11秒前
purple1212发布了新的文献求助10
11秒前
zhuangxiaocheng完成签到 ,获得积分20
12秒前
zho发布了新的文献求助10
13秒前
13秒前
子清完成签到,获得积分0
13秒前
qwerty完成签到,获得积分10
13秒前
wanci应助会撒娇的诺言采纳,获得10
14秒前
14秒前
TYF完成签到,获得积分20
14秒前
14秒前
15秒前
僦是卜够完成签到,获得积分10
15秒前
医路通行发布了新的文献求助10
15秒前
ruohanyu完成签到 ,获得积分10
16秒前
刘之桃完成签到,获得积分10
18秒前
星期五完成签到,获得积分10
19秒前
在远方发布了新的文献求助10
19秒前
soloella完成签到,获得积分10
19秒前
奋斗的雅柔完成签到,获得积分10
19秒前
Owen应助朱可芯采纳,获得10
19秒前
TYF发布了新的文献求助10
20秒前
情怀应助僦是卜够采纳,获得10
20秒前
刘之桃发布了新的文献求助30
21秒前
21秒前
Tree完成签到 ,获得积分10
21秒前
小星星完成签到 ,获得积分10
22秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165183
求助须知:如何正确求助?哪些是违规求助? 2816187
关于积分的说明 7911845
捐赠科研通 2475930
什么是DOI,文献DOI怎么找? 1318423
科研通“疑难数据库(出版商)”最低求助积分说明 632143
版权声明 602388