Model long-range dependencies for multi-modality and multi-view retinopathy diagnosis through transformers

计算机科学 眼底(子宫) 人工智能 眼底摄影 计算机视觉 验光服务 荧光血管造影 医学 眼科 视网膜
作者
Yonghao Huang,Leiting Chen,Chuan Zhou,Ning Yan,Lifeng Qiao,Shanlin Lan,Yang Wen
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:271: 110544-110544 被引量:1
标识
DOI:10.1016/j.knosys.2023.110544
摘要

Early eye examination based on fundus images effectively prevents visual impairment caused by retinopathy. The laborious and error-prone process of interpreting fundus images and the lack of ophthalmologists have driven research toward automated retinopathy diagnosis. However, most previous studies have focused on single-modality fundus images, disregarding the integration of information from multiple views, rendering the results unsatisfactory and inconsistent with clinical practice due to the incomprehensive lesion features and incomplete fundus fields. To address this issue, we introduce multi-modality and multi-view fundus images into the automated retinopathy diagnosis pipeline. In contrast to single fundus images, sequential relationships in multi-modality and multi-view fundus images contain essential long-range dependency information, which is vital for retinopathy diagnosis. Inspired by the recent success of transformers for excavating long-range dependencies in sequence data, in this paper, we propose a transformer-based automated retinopathy diagnosis framework for pathology classification and symptom report generation by integrating multi-modality and multi-view fundus images. Specifically, we present two transformer-based networks to construct long-range dependencies in different fundus images. Moreover, we adopt two novel modules to aggregate features of different modalities and views by modeling long-range dependencies among different fundus image sequences. Experiments are conducted on two in-house datasets, in which each subject provides one color fundus photography image and four-view fundus fluorescein angiography images. The experimental results of retinopathy classification and report generation tasks indicate that our proposed method is superior to other benchmarking methods, achieving a classification accuracy of 85.49% and a report generation BlEU-1 of 0.422.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Barry完成签到,获得积分10
1秒前
彭于晏应助浅斟低唱采纳,获得10
2秒前
归海含烟完成签到,获得积分10
3秒前
DrS完成签到,获得积分10
4秒前
5秒前
枯藤老柳树完成签到,获得积分10
5秒前
5秒前
7秒前
桐桐应助独钓寒江雪采纳,获得10
7秒前
8秒前
吾酒完成签到,获得积分10
8秒前
顺利的乐枫完成签到 ,获得积分10
8秒前
Junior发布了新的文献求助10
10秒前
lyric发布了新的文献求助10
10秒前
12秒前
雾失楼台完成签到,获得积分10
12秒前
焱垚完成签到,获得积分10
13秒前
14秒前
yuyuan完成签到,获得积分10
15秒前
auraro完成签到 ,获得积分10
17秒前
19秒前
momo完成签到,获得积分10
23秒前
23秒前
Junior完成签到,获得积分10
23秒前
赵小胖完成签到,获得积分10
24秒前
26秒前
26秒前
含章发布了新的文献求助10
28秒前
浅斟低唱发布了新的文献求助10
28秒前
小蘑菇应助积极的笑阳采纳,获得10
28秒前
李爱国应助积极的笑阳采纳,获得10
28秒前
zho发布了新的文献求助10
29秒前
31秒前
共享精神应助含章采纳,获得10
32秒前
大神完成签到,获得积分10
33秒前
田様应助sml采纳,获得10
34秒前
ZoeyD完成签到 ,获得积分10
35秒前
时尚的哈密瓜完成签到,获得积分10
36秒前
司纤户羽发布了新的文献求助50
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Atmosphere-ice-ocean interactions in the Antarctic 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3678161
求助须知:如何正确求助?哪些是违规求助? 3231655
关于积分的说明 9798838
捐赠科研通 2942823
什么是DOI,文献DOI怎么找? 1613538
邀请新用户注册赠送积分活动 761639
科研通“疑难数据库(出版商)”最低求助积分说明 737048