亚甲蓝
壳聚糖
材料科学
水溶液
肿胀 的
海藻酸钠
复合数
自愈水凝胶
吸附
化学工程
生物高聚物
复合材料
高分子化学
钠
化学
有机化学
聚合物
催化作用
工程类
光催化
冶金
作者
Zhen Zhang,Noureddine Abidi,Lucian A. Lucia
标识
DOI:10.1016/j.jmst.2023.02.045
摘要
The presence of toxic dyes in the aqueous medium has threatened environmental safety, and thereby removing them from wastewater in an efficient way is highly desired. Herein, the efficient biosorbents were successfully fabricated via a facile physical gelation process of sodium alginate (SA) and carboxymethyl chitosan (CMCTS) in an acidic aqueous solution. The as-prepared hydrogel beads not only displayed water superabsorbent properties and pH-responsive swelling characters but also exhibited excellent methylene blue (MB) adsorption capacity removal efficiency with experimental maximum MB adsorption capacity of 2518 and 1005 mg g–1, which are comparable with most reported lignocellulosic and alginate-based hydrogels. The MB adsorption process fitted well in different kinetic and isotherm models and became more heterogeneous in concentrated MB solutions as verified by principal component analysis results. The adsorption mechanism was proposed, and the high dye absorbency was attributed to the strong electrostatic forces between adsorbents and adsorbates. Our current study provides a promising and sustainable composite hydrogels platform targeted to dye decontamination.
科研通智能强力驱动
Strongly Powered by AbleSci AI