放射基因组学
无线电技术
医学
卵巢癌
基因组学
癌症
基因组信息
生物信息学
计算生物学
病理
内科学
基因组
基因
放射科
遗传学
生物
作者
Camilla Panico,Giacomo Avesani,Konstantinos Zormpas-Petridis,Leonardo Rundo,Camilla Nero,Evis Sala
标识
DOI:10.1016/j.rcl.2023.02.006
摘要
Ovarian cancer, one of the deadliest gynecologic malignancies, is characterized by high intra- and inter-site genomic and phenotypic heterogeneity. The traditional information provided by the conventional interpretation of diagnostic imaging studies cannot adequately represent this heterogeneity. Radiomics analyses can capture the complex patterns related to the microstructure of the tissues and provide quantitative information about them. This review outlines how radiomics and its integration with other quantitative biological information, like genomics and proteomics, can impact the clinical management of ovarian cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI