An Improved Sequence-to-Point Learning for Non-Intrusive Load Monitoring Based on Discrete Wavelet Transform

计算机科学 离散小波变换 小波变换 自编码 小波 修剪 过程(计算) 人工智能 实时计算 序列(生物学) 深度学习 农学 遗传学 生物 操作系统
作者
Chang Xiong,Zhaohui Cai,Shubo Liu,Jie Luo,Guoqing Tu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-16 被引量:5
标识
DOI:10.1109/tim.2023.3296127
摘要

Nonintrusive load monitoring (NILM) is a process that monitors the aggregated power consumption data of customers measured by a single sensor and decomposes the real-time power consumption of each dedicated device. Recent research has been focused on in-depth learning. However, the expensive cost of training time and the huge model scale are not conducive to the realization of smart meters. It is still challenging to accurately predict the real-time power of high-frequency appliances. This paper uses the discrete wavelet transform (DWT) to preprocess the data, which divides the frequency of the training power data. The processed data will be transferred to the enhanced sequence-to-point network (en-S2P) for training. The en-S2P network is the promotion of a sequence-to-point model (S2P) optimized by the autoencoder and bidirectional long short-term memory (Bi-LSTM) layer. And it is compressed by a combined pruning algorithm after being trained. The proposed model method is tested on the UK-DALE and REDD datasets using db2 and sym5 wavelet transform and compared with the S2P. Extensive experiments show that the proposed model can obtain a more satisfactory decomposition performance of appliances, especially high-frequency. In addition, it has a more lightweight scale and maintains a certain degree of sparsity, which is friendly to electricity meters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ee发布了新的文献求助30
刚刚
lmx完成签到,获得积分10
刚刚
1秒前
2秒前
桐桐应助zhui采纳,获得10
2秒前
web123完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
热情醉山发布了新的文献求助30
6秒前
Tinsulfides完成签到,获得积分10
9秒前
10秒前
猪猪hero应助甜美帅哥采纳,获得10
12秒前
阿托品完成签到,获得积分10
12秒前
13秒前
14秒前
高贵路灯完成签到,获得积分10
14秒前
mumu发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
19秒前
好好完成签到,获得积分10
19秒前
20秒前
Youtenter完成签到,获得积分10
20秒前
热情醉山完成签到,获得积分10
21秒前
Akim应助取个名儿吧采纳,获得10
21秒前
猪猪hero应助耍酷的梦桃采纳,获得10
21秒前
热情思天发布了新的文献求助30
22秒前
23秒前
蓝莲完成签到,获得积分10
23秒前
24秒前
Night完成签到,获得积分10
25秒前
宫城百事顺完成签到,获得积分10
25秒前
高高梦松完成签到,获得积分10
27秒前
周奕迅发布了新的文献求助10
27秒前
沉静代芹发布了新的文献求助10
29秒前
英姑应助科研顺利采纳,获得10
30秒前
自然的苗条完成签到,获得积分10
30秒前
pentjy完成签到,获得积分10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565528
求助须知:如何正确求助?哪些是违规求助? 3138490
关于积分的说明 9426917
捐赠科研通 2838955
什么是DOI,文献DOI怎么找? 1560600
邀请新用户注册赠送积分活动 729739
科研通“疑难数据库(出版商)”最低求助积分说明 717597