亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving Fine-Grained Image Classification With Multimodal Information

计算机科学 人工智能 模式识别(心理学) 特征提取 预处理器 规范化(社会学) 特征(语言学) 图像融合 图像(数学) 语言学 哲学 社会学 人类学
作者
Jie Xu,Xiaoqian Zhang,Changming Zhao,Zili Geng,Yuren Feng,Ke Miao,Yunji Li
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 2082-2095 被引量:2
标识
DOI:10.1109/tmm.2023.3291819
摘要

Fine-grained image datasets have small inter-class differences and large intra-class differences, which is a difficulty of the fine-grained image classification. Traditional fine-grained image classification methods only focus on the visual features of images. However, this limitation can be eliminated when these methods are improved with multimodal information. This paper proposes an improved fine-grained image classification method with multimodal information that includes multimodal data preprocessing, multimodal feature extraction, multi-temporal feature fusion and decision correction. The preprocessing method proposed solves the problems of scattered distribution, difficult processing and uneven contribution to prediction of multimodal data through normalization, packing phrases and weighted concatenating methods. When extracting multimodal features, the SAMLP (Self-Attention MLP) module proposed combines self-attention with MLP to capture the internal correlation of multimodal information. The multi-temporal feature fusion proposed is divided into early feature fusion and late feature fusion. The former refers to adding multimodal information markers to the original image, and the latter refers to designing a multi-cascade dynamic MLP structure to fuse visual features and multimodal features. In view of the limitation of feature fusion, a decision strategy is proposed to revise the prediction results of fused features according to the prediction results of multimodal features. Ablation experiment on INAT18-1K and INAT21-1K datasets shows that our method is effective in improving classification with multimodal information. Experiments on the INAT2021_mini large dataset show that the comprehensive method in this paper has higher accuracy and negligible efficiency loss compared with the state-of-the-art method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuke完成签到,获得积分10
11秒前
11秒前
RTP完成签到 ,获得积分10
12秒前
酷波er应助做实验的蘑菇采纳,获得10
19秒前
22秒前
32秒前
48秒前
49秒前
平淡夏云完成签到,获得积分10
54秒前
平淡夏云发布了新的文献求助10
58秒前
庚朝年完成签到 ,获得积分10
58秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
xiaoran发布了新的文献求助10
1分钟前
1分钟前
可爱的函函应助平淡夏云采纳,获得10
1分钟前
1分钟前
LONG完成签到 ,获得积分10
1分钟前
JamesPei应助海绵徐采纳,获得10
1分钟前
hhf完成签到,获得积分10
1分钟前
善学以致用应助wang采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
海绵徐发布了新的文献求助10
1分钟前
枫于林完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
小王发布了新的文献求助50
1分钟前
1分钟前
斯文的难摧完成签到,获得积分10
1分钟前
糊涂的中恶完成签到 ,获得积分10
1分钟前
Bressanone完成签到,获得积分10
1分钟前
1分钟前
潮人完成签到 ,获得积分10
1分钟前
叶子发布了新的文献求助10
1分钟前
ding应助别急我先送采纳,获得10
2分钟前
赘婿应助zl采纳,获得10
2分钟前
2分钟前
青衫完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133920
求助须知:如何正确求助?哪些是违规求助? 2784804
关于积分的说明 7768626
捐赠科研通 2440175
什么是DOI,文献DOI怎么找? 1297190
科研通“疑难数据库(出版商)”最低求助积分说明 624911
版权声明 600791