清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Dynamic Job-Shop Scheduling Problems Using Graph Neural Network and Deep Reinforcement Learning

计算机科学 强化学习 作业车间调度 马尔可夫决策过程 概化理论 调度(生产过程) 数学优化 人工智能 动态优先级调度 机器学习 地铁列车时刻表 马尔可夫过程 数学 统计 操作系统
作者
Chien‐Liang Liu,Tzu‐Hsuan Huang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (11): 6836-6848 被引量:77
标识
DOI:10.1109/tsmc.2023.3287655
摘要

The job-shop scheduling problem (JSSP) is one of the best-known combinatorial optimization problems and is also an essential task in various sectors. In most real-world environments, scheduling is complex, stochastic, and dynamic, with inevitable uncertainties. Therefore, this article proposes a novel framework based on graph neural networks (GNNs) and deep reinforcement learning (DRL) to deal with the dynamic JSSP (DJSSP) with stochastic job arrivals and random machine breakdowns by minimizing the makespan. In the proposed framework, JSSP is formulated as a Markov decision process (MDP) and is associated with a disjunctive graph to encode the information of jobs and machines as nodes and arcs. We propose a GNN architecture to perform representation learning by transforming graph states into node embeddings. Then, the agent takes actions using a parameterized policy in terms of policy learning. Operations are used as actions, and an effective reward is well designed to guide the agent. We train our proposed method using proximal policy optimization (PPO), which helps minimize the loss function while ensuring that the deviation is relatively small. Extensive experiments show that the proposed method can achieve excellent results considering different criteria: efficiency, effectiveness, robustness, and generalizability. Once the proposed method is trained, it can directly schedule new JSSPs of different sizes and distributions in static benchmark tests, showing its excellent generalizability and effectiveness compared to another DRL-based method. Furthermore, the proposed method simultaneously maintains the win rate (a quantitative metric) and the scheduling score (a qualitative metric) when scheduling in dynamic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
玛卡巴卡爱吃饭完成签到 ,获得积分10
3秒前
5秒前
wrl2023发布了新的文献求助10
8秒前
sqc发布了新的文献求助10
10秒前
wrl2023完成签到,获得积分10
21秒前
房天川完成签到 ,获得积分10
25秒前
临兵者完成签到 ,获得积分10
26秒前
科研通AI6应助科研通管家采纳,获得10
57秒前
科研通AI6应助科研通管家采纳,获得10
57秒前
开放青旋应助科研通管家采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
科研通AI6应助科研通管家采纳,获得10
57秒前
1分钟前
1分钟前
勤奋流沙完成签到 ,获得积分10
1分钟前
朴素海亦完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
小白菜完成签到,获得积分10
2分钟前
2分钟前
袁青寒完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
TEMPO发布了新的文献求助10
3分钟前
魔术师完成签到 ,获得积分10
3分钟前
3分钟前
瞿寒完成签到,获得积分10
3分钟前
快乐的笑阳完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
香蕉觅云应助huenguyenvan采纳,获得10
4分钟前
李健应助阿萨卡先生采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715085
求助须知:如何正确求助?哪些是违规求助? 5230157
关于积分的说明 15274003
捐赠科研通 4866162
什么是DOI,文献DOI怎么找? 2612714
邀请新用户注册赠送积分活动 1562934
关于科研通互助平台的介绍 1520210