Dynamic Job-Shop Scheduling Problems Using Graph Neural Network and Deep Reinforcement Learning

计算机科学 强化学习 作业车间调度 马尔可夫决策过程 概化理论 调度(生产过程) 数学优化 人工智能 动态优先级调度 机器学习 地铁列车时刻表 马尔可夫过程 数学 统计 操作系统
作者
Chien‐Liang Liu,Tzu‐Hsuan Huang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (11): 6836-6848 被引量:77
标识
DOI:10.1109/tsmc.2023.3287655
摘要

The job-shop scheduling problem (JSSP) is one of the best-known combinatorial optimization problems and is also an essential task in various sectors. In most real-world environments, scheduling is complex, stochastic, and dynamic, with inevitable uncertainties. Therefore, this article proposes a novel framework based on graph neural networks (GNNs) and deep reinforcement learning (DRL) to deal with the dynamic JSSP (DJSSP) with stochastic job arrivals and random machine breakdowns by minimizing the makespan. In the proposed framework, JSSP is formulated as a Markov decision process (MDP) and is associated with a disjunctive graph to encode the information of jobs and machines as nodes and arcs. We propose a GNN architecture to perform representation learning by transforming graph states into node embeddings. Then, the agent takes actions using a parameterized policy in terms of policy learning. Operations are used as actions, and an effective reward is well designed to guide the agent. We train our proposed method using proximal policy optimization (PPO), which helps minimize the loss function while ensuring that the deviation is relatively small. Extensive experiments show that the proposed method can achieve excellent results considering different criteria: efficiency, effectiveness, robustness, and generalizability. Once the proposed method is trained, it can directly schedule new JSSPs of different sizes and distributions in static benchmark tests, showing its excellent generalizability and effectiveness compared to another DRL-based method. Furthermore, the proposed method simultaneously maintains the win rate (a quantitative metric) and the scheduling score (a qualitative metric) when scheduling in dynamic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柱子pillar完成签到,获得积分10
1秒前
SciGPT应助碧蓝网络采纳,获得10
1秒前
星辰大海应助穆仰采纳,获得10
2秒前
gaugua完成签到,获得积分10
2秒前
2秒前
3秒前
沉默的凝云完成签到,获得积分10
4秒前
雪雪完成签到,获得积分10
4秒前
4秒前
XZZH完成签到,获得积分10
4秒前
4秒前
5秒前
Luckqi6688完成签到,获得积分10
5秒前
浪里白条完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
hu发布了新的文献求助20
5秒前
6秒前
agnes发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
gro_ele发布了新的文献求助10
6秒前
6秒前
完美的铸海完成签到,获得积分10
6秒前
6秒前
天天快乐应助kobespecial采纳,获得30
7秒前
7秒前
麋鹿完成签到,获得积分10
7秒前
李健的小迷弟应助cola采纳,获得30
7秒前
林狗发布了新的文献求助10
7秒前
8秒前
秋的账号发布了新的文献求助10
8秒前
8秒前
酷酷依秋发布了新的文献求助10
9秒前
beibei111发布了新的文献求助10
9秒前
JamesPei应助曾叫兽采纳,获得10
9秒前
10秒前
10秒前
巫雍发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512517
求助须知:如何正确求助?哪些是违规求助? 4606978
关于积分的说明 14502144
捐赠科研通 4542339
什么是DOI,文献DOI怎么找? 2489004
邀请新用户注册赠送积分活动 1471040
关于科研通互助平台的介绍 1443182