Dynamic Job-Shop Scheduling Problems Using Graph Neural Network and Deep Reinforcement Learning

计算机科学 强化学习 作业车间调度 马尔可夫决策过程 概化理论 调度(生产过程) 数学优化 人工智能 动态优先级调度 机器学习 地铁列车时刻表 马尔可夫过程 数学 统计 操作系统
作者
Chien‐Liang Liu,Tzu‐Hsuan Huang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (11): 6836-6848 被引量:88
标识
DOI:10.1109/tsmc.2023.3287655
摘要

The job-shop scheduling problem (JSSP) is one of the best-known combinatorial optimization problems and is also an essential task in various sectors. In most real-world environments, scheduling is complex, stochastic, and dynamic, with inevitable uncertainties. Therefore, this article proposes a novel framework based on graph neural networks (GNNs) and deep reinforcement learning (DRL) to deal with the dynamic JSSP (DJSSP) with stochastic job arrivals and random machine breakdowns by minimizing the makespan. In the proposed framework, JSSP is formulated as a Markov decision process (MDP) and is associated with a disjunctive graph to encode the information of jobs and machines as nodes and arcs. We propose a GNN architecture to perform representation learning by transforming graph states into node embeddings. Then, the agent takes actions using a parameterized policy in terms of policy learning. Operations are used as actions, and an effective reward is well designed to guide the agent. We train our proposed method using proximal policy optimization (PPO), which helps minimize the loss function while ensuring that the deviation is relatively small. Extensive experiments show that the proposed method can achieve excellent results considering different criteria: efficiency, effectiveness, robustness, and generalizability. Once the proposed method is trained, it can directly schedule new JSSPs of different sizes and distributions in static benchmark tests, showing its excellent generalizability and effectiveness compared to another DRL-based method. Furthermore, the proposed method simultaneously maintains the win rate (a quantitative metric) and the scheduling score (a qualitative metric) when scheduling in dynamic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东方烟完成签到,获得积分10
刚刚
眼睛大的从雪完成签到,获得积分10
1秒前
月yue完成签到,获得积分10
2秒前
2秒前
chx完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
三七二十一完成签到 ,获得积分10
4秒前
简单567应助逆转采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
Lucas应助孙靖博采纳,获得10
5秒前
choup53完成签到,获得积分10
5秒前
jimmy完成签到,获得积分20
6秒前
现代的书本完成签到,获得积分10
6秒前
7秒前
LL完成签到,获得积分10
9秒前
开心小鸭子完成签到,获得积分10
9秒前
9秒前
xj305完成签到,获得积分10
10秒前
liyiliyi117完成签到,获得积分10
12秒前
12秒前
12秒前
RDQ完成签到,获得积分10
13秒前
宁静致远完成签到,获得积分10
13秒前
zy完成签到 ,获得积分10
14秒前
zhangyanxi完成签到,获得积分10
16秒前
腿毛怪大叔完成签到,获得积分10
16秒前
111完成签到,获得积分10
16秒前
呜呼完成签到,获得积分10
16秒前
白枫完成签到 ,获得积分0
17秒前
传奇3应助jimmy采纳,获得10
17秒前
屋子完成签到,获得积分10
17秒前
杨胜菲完成签到,获得积分10
18秒前
孙靖博发布了新的文献求助10
19秒前
港崽宝宝完成签到,获得积分10
20秒前
20秒前
shaw发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
soda完成签到,获得积分10
22秒前
李_小_八完成签到,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5765205
求助须知:如何正确求助?哪些是违规求助? 5559522
关于积分的说明 15407703
捐赠科研通 4900027
什么是DOI,文献DOI怎么找? 2636147
邀请新用户注册赠送积分活动 1584368
关于科研通互助平台的介绍 1539610