Dynamic Job-Shop Scheduling Problems Using Graph Neural Network and Deep Reinforcement Learning

计算机科学 强化学习 作业车间调度 马尔可夫决策过程 概化理论 调度(生产过程) 数学优化 人工智能 动态优先级调度 机器学习 地铁列车时刻表 马尔可夫过程 数学 统计 操作系统
作者
Chien‐Liang Liu,Tzu‐Hsuan Huang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (11): 6836-6848 被引量:19
标识
DOI:10.1109/tsmc.2023.3287655
摘要

The job-shop scheduling problem (JSSP) is one of the best-known combinatorial optimization problems and is also an essential task in various sectors. In most real-world environments, scheduling is complex, stochastic, and dynamic, with inevitable uncertainties. Therefore, this article proposes a novel framework based on graph neural networks (GNNs) and deep reinforcement learning (DRL) to deal with the dynamic JSSP (DJSSP) with stochastic job arrivals and random machine breakdowns by minimizing the makespan. In the proposed framework, JSSP is formulated as a Markov decision process (MDP) and is associated with a disjunctive graph to encode the information of jobs and machines as nodes and arcs. We propose a GNN architecture to perform representation learning by transforming graph states into node embeddings. Then, the agent takes actions using a parameterized policy in terms of policy learning. Operations are used as actions, and an effective reward is well designed to guide the agent. We train our proposed method using proximal policy optimization (PPO), which helps minimize the loss function while ensuring that the deviation is relatively small. Extensive experiments show that the proposed method can achieve excellent results considering different criteria: efficiency, effectiveness, robustness, and generalizability. Once the proposed method is trained, it can directly schedule new JSSPs of different sizes and distributions in static benchmark tests, showing its excellent generalizability and effectiveness compared to another DRL-based method. Furthermore, the proposed method simultaneously maintains the win rate (a quantitative metric) and the scheduling score (a qualitative metric) when scheduling in dynamic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
殷勤柠檬完成签到,获得积分10
1秒前
1秒前
2秒前
上官若男应助52Hz采纳,获得10
2秒前
ZQP完成签到,获得积分10
3秒前
4秒前
殷勤柠檬发布了新的文献求助10
5秒前
5秒前
Q123ba叭完成签到 ,获得积分10
5秒前
ZQP发布了新的文献求助10
6秒前
zcbbb完成签到 ,获得积分10
6秒前
鲤鱼鑫磊发布了新的文献求助10
7秒前
雷霆康康完成签到,获得积分10
7秒前
夏天再见完成签到,获得积分10
8秒前
卡卡滴滴发布了新的文献求助10
8秒前
斯文败类应助后周寒生采纳,获得10
8秒前
11发布了新的文献求助10
9秒前
科目三应助鲤鱼鑫磊采纳,获得10
13秒前
高大凌寒应助稳重伊采纳,获得10
13秒前
零九三完成签到,获得积分10
13秒前
phg021发布了新的文献求助10
14秒前
高兴冬灵完成签到,获得积分20
14秒前
受伤的妙之应助ZQP采纳,获得10
15秒前
852应助ZQP采纳,获得10
15秒前
TG_FY完成签到,获得积分10
15秒前
高桥凉介完成签到,获得积分10
16秒前
Xin应助鹤轸采纳,获得150
17秒前
52Hz完成签到,获得积分10
19秒前
月亮完成签到,获得积分20
20秒前
荣荣完成签到,获得积分10
20秒前
ganchao1776完成签到,获得积分10
22秒前
22秒前
月亮发布了新的文献求助10
23秒前
23秒前
tony完成签到,获得积分10
24秒前
yue完成签到,获得积分10
25秒前
neo完成签到,获得积分10
27秒前
shifeng_zai发布了新的文献求助10
27秒前
zcbb完成签到,获得积分10
27秒前
Lion完成签到,获得积分20
28秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162623
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900768
捐赠科研通 2473078
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175