Dynamic Job-Shop Scheduling Problems Using Graph Neural Network and Deep Reinforcement Learning

计算机科学 强化学习 作业车间调度 马尔可夫决策过程 概化理论 调度(生产过程) 数学优化 人工智能 动态优先级调度 机器学习 地铁列车时刻表 马尔可夫过程 数学 统计 操作系统
作者
Chien‐Liang Liu,Tzu‐Hsuan Huang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (11): 6836-6848 被引量:19
标识
DOI:10.1109/tsmc.2023.3287655
摘要

The job-shop scheduling problem (JSSP) is one of the best-known combinatorial optimization problems and is also an essential task in various sectors. In most real-world environments, scheduling is complex, stochastic, and dynamic, with inevitable uncertainties. Therefore, this article proposes a novel framework based on graph neural networks (GNNs) and deep reinforcement learning (DRL) to deal with the dynamic JSSP (DJSSP) with stochastic job arrivals and random machine breakdowns by minimizing the makespan. In the proposed framework, JSSP is formulated as a Markov decision process (MDP) and is associated with a disjunctive graph to encode the information of jobs and machines as nodes and arcs. We propose a GNN architecture to perform representation learning by transforming graph states into node embeddings. Then, the agent takes actions using a parameterized policy in terms of policy learning. Operations are used as actions, and an effective reward is well designed to guide the agent. We train our proposed method using proximal policy optimization (PPO), which helps minimize the loss function while ensuring that the deviation is relatively small. Extensive experiments show that the proposed method can achieve excellent results considering different criteria: efficiency, effectiveness, robustness, and generalizability. Once the proposed method is trained, it can directly schedule new JSSPs of different sizes and distributions in static benchmark tests, showing its excellent generalizability and effectiveness compared to another DRL-based method. Furthermore, the proposed method simultaneously maintains the win rate (a quantitative metric) and the scheduling score (a qualitative metric) when scheduling in dynamic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Livvia完成签到,获得积分10
刚刚
Pwrry完成签到,获得积分10
1秒前
亮仔完成签到,获得积分10
2秒前
斯文的天奇完成签到 ,获得积分10
2秒前
安详的韩庆完成签到,获得积分10
2秒前
harric完成签到,获得积分10
3秒前
123456完成签到,获得积分20
3秒前
澈千子完成签到,获得积分10
3秒前
曾建完成签到 ,获得积分10
3秒前
chen完成签到 ,获得积分10
4秒前
喜东东完成签到,获得积分10
4秒前
孤独梦曼完成签到,获得积分10
4秒前
Jasper应助慕容松采纳,获得10
5秒前
亮仔发布了新的文献求助10
6秒前
6秒前
HAL9000完成签到,获得积分10
6秒前
昵称完成签到,获得积分10
7秒前
和平发展完成签到,获得积分10
7秒前
本草石之寒温完成签到 ,获得积分10
7秒前
Lucas应助可乐采纳,获得10
8秒前
9秒前
吕布完成签到,获得积分10
9秒前
9秒前
9秒前
Owen应助yy采纳,获得10
10秒前
licheng完成签到,获得积分10
10秒前
灰太狼大王完成签到 ,获得积分10
11秒前
稳重的蜡烛完成签到,获得积分10
11秒前
Aoia完成签到,获得积分10
12秒前
星月夜完成签到,获得积分10
12秒前
哈哈完成签到,获得积分10
12秒前
12秒前
LVMIN发布了新的文献求助10
12秒前
秋秋完成签到,获得积分10
13秒前
天阳完成签到,获得积分10
13秒前
tfr06完成签到,获得积分10
13秒前
Conccuc完成签到,获得积分10
14秒前
街上的狗完成签到,获得积分0
14秒前
wyu完成签到,获得积分10
14秒前
干大事的小喽啰完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495367
关于积分的说明 11076612
捐赠科研通 3225910
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867609
科研通“疑难数据库(出版商)”最低求助积分说明 800855