Practical Collaborative Perception: A Framework for Asynchronous and Multi-Agent 3D Object Detection

异步通信 计算机科学 目标检测 感知 人机交互 人工智能 计算机视觉 心理学 计算机网络 模式识别(心理学) 神经科学
作者
Minh-Quan Dao,Julie Stephany Berrío,Vincent Frémont,Mao Shan,Elwan Héry,Stewart Worrall
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 12163-12175 被引量:2
标识
DOI:10.1109/tits.2024.3371177
摘要

Occlusion is a major challenge for LiDAR-based object detection methods as it renders regions of interest unobservable to the ego vehicle. A proposed solution to this problem comes from collaborative perception via Vehicle-to-Everything (V2X) communication, which leverages a diverse perspective thanks to the presence of connected agents (vehicles and intelligent roadside units) at multiple locations to form a complete scene representation. The major challenge of V2X collaboration is the performance-bandwidth tradeoff which presents two questions 1) which information should be exchanged over the V2X network and 2) how the exchanged information is fused. The current state-of-the-art resolves to the mid-collaboration approach where Birds-Eye View (BEV) images of point clouds are communicated to enable a deep interaction among connected agents while reducing bandwidth consumption. While achieving strong performance, the real-world deployment of most mid-collaboration approaches are hindered by their overly complicated architectures and unrealistic assumptions about inter-agent synchronization. In this work, we devise a simple yet effective collaboration method based on exchanging the outputs from each agent that achieves a better bandwidth-performance tradeoff while minimising the required changes to the single-vehicle detection models. Moreover, we relax the assumptions used in existing state-of-the-art approaches about inter-agent synchronization to only require a common time reference among connected agents, which can be achieved in practice using GPS time. Experiments on the V2X-Sim dataset show that our collaboration method reaches 76.72 mean average precision which is 99% the performance of the early collaboration method while consuming as much bandwidth as the late collaboration (0.01 MB on average). The code will be released in https://github.com/quan-dao/practical-collab-perception.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力飞雪完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
1秒前
甜甜妙芙发布了新的文献求助10
1秒前
Catalysis123完成签到,获得积分10
1秒前
世外完成签到,获得积分10
1秒前
Tong完成签到,获得积分10
2秒前
WANG完成签到,获得积分10
3秒前
3秒前
3秒前
大力飞雪发布了新的文献求助30
4秒前
4秒前
落后易绿完成签到,获得积分20
5秒前
xingxing完成签到,获得积分10
5秒前
green完成签到,获得积分10
5秒前
binbin完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
二维世界是个圆完成签到,获得积分10
7秒前
7秒前
科研小豆发布了新的文献求助10
7秒前
科目三应助zcq2425采纳,获得10
8秒前
小林太郎应助断绝的采纳,获得10
8秒前
wanglu完成签到,获得积分10
9秒前
9秒前
大力捕完成签到,获得积分10
10秒前
Beth完成签到,获得积分10
10秒前
老孙完成签到,获得积分10
10秒前
MQ&FF完成签到,获得积分0
10秒前
辉辉发布了新的文献求助10
11秒前
多喝温水完成签到 ,获得积分10
11秒前
11秒前
12秒前
冲刺的仙人掌完成签到 ,获得积分10
12秒前
12秒前
12秒前
王青完成签到,获得积分20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522709
求助须知:如何正确求助?哪些是违规求助? 3103705
关于积分的说明 9266832
捐赠科研通 2800287
什么是DOI,文献DOI怎么找? 1536901
邀请新用户注册赠送积分活动 715181
科研通“疑难数据库(出版商)”最低求助积分说明 708660