Biometrics recognition using deep learning: a survey

生物识别 计算机科学 深度学习 人工智能 机器学习 指纹(计算) 面部识别系统 认证(法律) 虹膜识别 签名识别 特征提取 计算机安全
作者
Shervin Minaee,AmirAli Abdolrashidi,Hang Su,Mohammed Bennamoun,David Zhang
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:56 (8): 8647-8695 被引量:84
标识
DOI:10.1007/s10462-022-10237-x
摘要

In the past few years, deep learning-based models have been very successful in achieving state-of-the-art results in many tasks in computer vision, speech recognition, and natural language processing. These models seem to be a natural fit for handling the ever-increasing scale of biometric recognition problems, from cellphone authentication to airport security systems. Deep learning-based models have increasingly been leveraged to improve the accuracy of different biometric recognition systems in recent years. In this work, we provide a comprehensive survey of more than 150 promising works on biometric recognition (including face, fingerprint, iris, palmprint, ear, voice, signature, and gait recognition), which deploy deep learning models, and show their strengths and potentials in different applications. For each biometric, we first introduce the available datasets that are widely used in the literature and their characteristics. We will then talk about several promising deep learning works developed for that biometric, and show their performance on popular public benchmarks. We will also discuss some of the main challenges while using these models for biometric recognition, and possible future directions to which research in this area is headed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Lucas应助XiaoMing采纳,获得10
1秒前
仄仄发布了新的文献求助10
2秒前
LJJ发布了新的文献求助10
2秒前
子非鱼发布了新的文献求助10
2秒前
3秒前
SciGPT应助医学牲采纳,获得10
3秒前
霍晓敏发布了新的文献求助10
3秒前
这啥呀完成签到,获得积分10
3秒前
自觉大门发布了新的文献求助10
3秒前
Hello应助无心的青文采纳,获得10
4秒前
shaco发布了新的文献求助10
5秒前
了该发布了新的文献求助10
5秒前
丰知然应助欣慰的血茗采纳,获得10
6秒前
NexusExplorer应助zhi-pengbao采纳,获得10
6秒前
默默雅阳应助神秘人采纳,获得10
6秒前
隐形曼青应助细心的梦芝采纳,获得10
6秒前
老王完成签到,获得积分10
6秒前
梨儿发布了新的文献求助10
6秒前
6秒前
7秒前
keyangou完成签到,获得积分10
8秒前
宗嘻嘻发布了新的文献求助10
8秒前
李爱国应助ZY采纳,获得10
8秒前
10秒前
研友_VZG7GZ应助P88JNG采纳,获得10
10秒前
10秒前
灵巧的谷丝完成签到 ,获得积分20
10秒前
dunhuang完成签到,获得积分10
10秒前
12秒前
liu完成签到,获得积分10
12秒前
13秒前
13秒前
机灵凝丹发布了新的文献求助10
13秒前
13秒前
14秒前
飞雪之舞完成签到,获得积分10
14秒前
liu发布了新的文献求助10
14秒前
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309260
求助须知:如何正确求助?哪些是违规求助? 2942635
关于积分的说明 8510003
捐赠科研通 2617762
什么是DOI,文献DOI怎么找? 1430366
科研通“疑难数据库(出版商)”最低求助积分说明 664123
邀请新用户注册赠送积分活动 649274