Multifunctionality is important to the development of next-generation actuators and intelligent robots. However, current multi-functional actuating systems are achieved based on the integration of diverse functional units with complex design, especially lacking in multi-mode sensing and displaying functions. Herein, a light-driven actuator integrated with self-powered/visual dual-mode sensing functions and rewritable display function is proposed. The actuator demonstrates a bending curvature of 0.93 cm-1 under near-infrared light irradiation. Meanwhile, by embedding a pencil-drawn graphite generator and thermochromic materials, the actuator also provides two independent sensing functions. First, owing to the photo-thermoelectric effect of graphite, the actuator spontaneously outputs a self-powered voltage (Seebeck coefficient: 23 µV K-1 ), which can reflect the deformation trend of actuator. Second, color changes occur on the actuator during deformation, which provide a visual sensing due to the thermochromic property. Furthermore, the actuator can be utilized as a rewritable display, owing to the integrated color-memorizing component. Intelligent robots, switches, and smart homes are further demonstrated as applications. All of them can spontaneously provide self-powered and visual sensing signals to demonstrate the working states of actuating systems, accompanied by rewritable displays on the actuators. This study will open a new direction for self-powered devices, multi-functional actuators, and intelligent robots.