Anomaly Detection in Hyperspectral Images Using Adaptive Graph Frequency Location

高光谱成像 异常检测 计算机科学 图形 人工智能 计算机视觉 模式识别(心理学) 遥感 地质学 理论计算机科学
作者
Bing Tu,Xianchang Yang,Baoliang He,Yunyun Chen,Jun Li,Antonio Plaza
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:4
标识
DOI:10.1109/tnnls.2024.3449573
摘要

Graph theory-based techniques have recently been adopted for anomaly detection in hyperspectral images (HSIs). However, these methods rely excessively on the relational structure within the constructed graphs and tend to downplay the importance of spectral features in the original HSI. To address this issue, we introduce graph frequency analysis to hyperspectral anomaly detection (HAD), which can serve as a natural tool for integrating graph structure and spectral features. We treat anomaly detection as a problem of graph frequency location, achieved by constructing a beta distribution-based graph wavelet space, where the optimal wavelet can be identified adaptively for anomaly detection. Initially, a high-dimensional, undirected, unweighted graph is built using the pixels in the HSI as vertices. By leveraging the observation of energy shifting to higher frequencies caused by anomalies, we can dynamically pinpoint the specific Beta wavelet associated with the anomalies' high-frequency content to accurately extract anomalies in the context of HSIs. Furthermore, we introduce a novel entropy definition to address the frequency location problem in an adaptive manner. Experimental results from seven real HSIs validate the remarkable detection performance of our newly proposed approach when compared to various state-of-the-art anomaly detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
五月发布了新的文献求助10
1秒前
无花果应助yhc采纳,获得10
1秒前
哈哈完成签到,获得积分10
3秒前
柠檬发布了新的文献求助10
3秒前
粥粥完成签到 ,获得积分10
4秒前
单纯沐沐发布了新的文献求助10
4秒前
科研小白发布了新的文献求助10
5秒前
xxxxxXPoVo完成签到,获得积分10
5秒前
6秒前
LiYong完成签到,获得积分10
7秒前
7秒前
7秒前
9秒前
陶醉的斓完成签到,获得积分10
9秒前
10秒前
11秒前
满满啊发布了新的文献求助10
12秒前
劲秉应助那年采纳,获得30
12秒前
曹kn发布了新的文献求助10
12秒前
余小平完成签到,获得积分10
14秒前
14秒前
Zhiying发布了新的文献求助10
14秒前
15秒前
15秒前
顾矜应助深海的孤独哀采纳,获得10
16秒前
三金发布了新的文献求助10
17秒前
潇洒的诗桃应助我要7甜瓜采纳,获得10
18秒前
sincerely发布了新的文献求助10
18秒前
18秒前
猪猪1987发布了新的文献求助10
19秒前
香蕉觅云应助积极的硬币采纳,获得10
20秒前
姚婉兰发布了新的文献求助10
21秒前
天天快乐应助洪湖采纳,获得10
21秒前
22秒前
22秒前
酷炫小懒虫完成签到,获得积分10
22秒前
wanci应助小胡采纳,获得10
23秒前
森林木发布了新的文献求助10
25秒前
watermelon发布了新的文献求助10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465285
求助须知:如何正确求助?哪些是违规求助? 3058476
关于积分的说明 9061679
捐赠科研通 2748770
什么是DOI,文献DOI怎么找? 1508120
科研通“疑难数据库(出版商)”最低求助积分说明 696783
邀请新用户注册赠送积分活动 696467