Large Language Model-Based Natural Language Encoding Could Be All You Need for Drug Biomedical Association Prediction

化学 联想(心理学) 编码(内存) 自然语言 自然(考古学) 药品 自然语言处理 药物发现 计算生物学 人工智能 药理学 心理学 生物化学 计算机科学 医学 考古 生物 心理治疗师 历史
作者
Hanyu Zhang,Yuan Zhou,Zhichao Zhang,Huaicheng Sun,Ziqi Pan,Minjie Mou,Wei Zhang,Qing Ye,Tingjun Hou,Honglin Li,Chang-Yu Hsieh,Feng Zhu
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:5
标识
DOI:10.1021/acs.analchem.4c01793
摘要

Analyzing drug-related interactions in the field of biomedicine has been a critical aspect of drug discovery and development. While various artificial intelligence (AI)-based tools have been proposed to analyze drug biomedical associations (DBAs), their feature encoding did not adequately account for crucial biomedical functions and semantic concepts, thereby still hindering their progress. Since the advent of ChatGPT by OpenAI in 2022, large language models (LLMs) have demonstrated rapid growth and significant success across various applications. Herein, LEDAP was introduced, which uniquely leveraged LLM-based biotext feature encoding for predicting drug-disease associations, drug–drug interactions, and drug-side effect associations. Benefiting from the large-scale knowledgebase pre-training, LLMs had great potential in drug development analysis owing to their holistic understanding of natural language and human topics. LEDAP illustrated its notable competitiveness in comparison with other popular DBA analysis tools. Specifically, even in simple conjunction with classical machine learning methods, LLM-based feature representations consistently enabled satisfactory performance across diverse DBA tasks like binary classification, multiclass classification, and regression. Our findings underpinned the considerable potential of LLMs in drug development research, indicating a catalyst for further progress in related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
咕噜咕噜噜熊完成签到,获得积分10
1秒前
超级的小海豚完成签到,获得积分10
1秒前
1秒前
1秒前
深情安青应助LK采纳,获得10
1秒前
渔Avery完成签到,获得积分10
1秒前
forever完成签到,获得积分20
1秒前
xiaoyuanbao1988完成签到,获得积分10
1秒前
啊撒网大大e完成签到,获得积分10
2秒前
蓝胖子完成签到,获得积分10
3秒前
4秒前
坚定缘分完成签到,获得积分10
6秒前
细腻问柳完成签到 ,获得积分10
6秒前
金属喵酱完成签到,获得积分10
6秒前
forever发布了新的文献求助10
7秒前
Anny完成签到,获得积分20
7秒前
兔兔不睡觉完成签到 ,获得积分10
8秒前
9秒前
华仔应助tzjz_zrz采纳,获得30
10秒前
kento发布了新的文献求助30
10秒前
cc完成签到,获得积分10
10秒前
qiangxu发布了新的文献求助10
11秒前
11秒前
无花果应助懒猫采纳,获得10
11秒前
11秒前
清水完成签到 ,获得积分10
12秒前
LK发布了新的文献求助10
14秒前
思源应助活泼的觅云采纳,获得30
15秒前
15秒前
彼岸完成签到,获得积分10
17秒前
19秒前
顾矜应助阳光千亦采纳,获得10
21秒前
烟花应助forever采纳,获得10
21秒前
21秒前
xiaowang完成签到,获得积分10
21秒前
23秒前
岸岸岸岸完成签到,获得积分10
23秒前
23秒前
小马甲应助pwy采纳,获得10
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755395
求助须知:如何正确求助?哪些是违规求助? 3298462
关于积分的说明 10105902
捐赠科研通 3013141
什么是DOI,文献DOI怎么找? 1655012
邀请新用户注册赠送积分活动 789339
科研通“疑难数据库(出版商)”最低求助积分说明 753273