构造(python库)
生物累积
学习迁移
稳健性(进化)
人工神经网络
多任务学习
图形
计算机科学
人工智能
机器学习
化学
工程类
生态学
任务(项目管理)
理论计算机科学
生物
系统工程
程序设计语言
生物化学
基因
作者
Zijun Xiao,Minghua Zhu,Jingwen Chen,Zecang You
标识
DOI:10.1021/acs.est.4c02421
摘要
Accurate prediction of parameters related to the environmental exposure of chemicals is crucial for the sound management of chemicals. However, the lack of large data sets for training models may result in poor prediction accuracy and robustness. Herein, integrated transfer learning (TL) and multitask learning (MTL) was proposed for constructing a graph neural network (GNN) model (abbreviated as TL-MTL-GNN model) using
科研通智能强力驱动
Strongly Powered by AbleSci AI