Explicit Evolutionary Framework With Multitasking Feature Fusion for Optimizing Operational Parameters in Aluminum Electrolysis Process

人类多任务处理 过程(计算) 计算机科学 特征(语言学) 融合 电解 工艺工程 生物系统 化学 工程类 神经科学 生物 程序设计语言 电解质 语言学 哲学 电极 物理化学
作者
Lizhong Yao,Xin Zong,Sheng Wang,Rui Li,Jun Yi
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tcyb.2024.3456471
摘要

Collaboratively optimizing operational parameters through leveraging accumulated production experience is an innovative approach to reducing energy consumption in aluminum electrolysis cells (AECs). Due to the dynamic heterogeneity of various AECs, an explicit evolutionary multitasking (EMT) framework capable of incorporating different optimizers, has the potential to tackle this challenge effectively. However, there is a notable gap in theoretical research on multitasking collaborative evolutionary algorithms specifically applied to AECs. Meanwhile, existing explicit EMT algorithms often overlook the intertask correlation of feature information extracted in isolation from individual tasks. These issues significantly limit the development of synergistic effects in multitasking optimization for addressing parameter design in AECs. To address these limitations, this work proposes an explicit evolutionary framework with multitasking feature fusion (EMFF). This framework thoroughly considers the potential connections among feature information from different tasks. It achieves effective knowledge transfer by the design of a unique multitasking feature fusion mechanism, which enhances the information value of source tasks for target tasks. Furthermore, a transfer individual derivation (TID) strategy is introduced to ensure the rapid evolution of critical knowledge. Finally, comprehensive components and designed process are presented. Experimental results demonstrate EMFF's exceptional performance in various benchmark tests and real-world AEC parameter optimization cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英勇代荷完成签到,获得积分20
2秒前
2秒前
houbinghua发布了新的文献求助10
3秒前
大个应助嘎嘎发采纳,获得10
3秒前
4秒前
slby完成签到 ,获得积分10
4秒前
健壮雨兰完成签到,获得积分10
4秒前
缥缈冷亦发布了新的文献求助10
5秒前
6秒前
wangwei完成签到 ,获得积分10
7秒前
8秒前
9秒前
HR发布了新的文献求助30
10秒前
10秒前
赘婿应助boyeer采纳,获得10
10秒前
10秒前
缥缈冷亦完成签到,获得积分10
10秒前
研友_IEEE快到碗里来完成签到,获得积分10
10秒前
桐桐应助blueee采纳,获得10
12秒前
毛豆应助连安阳采纳,获得10
12秒前
ycy发布了新的文献求助10
12秒前
12秒前
Ava应助Jero采纳,获得10
13秒前
kaixinjh1234完成签到,获得积分10
15秒前
伍雄威发布了新的文献求助10
15秒前
16秒前
端庄代秋发布了新的文献求助10
16秒前
dochuang完成签到,获得积分10
16秒前
wyx完成签到 ,获得积分10
17秒前
17秒前
kento发布了新的文献求助100
18秒前
alexlpb完成签到,获得积分10
18秒前
在水一方应助hanjresearch采纳,获得10
19秒前
立里完成签到,获得积分10
19秒前
baby3480发布了新的文献求助10
19秒前
华仔应助袁来如此采纳,获得20
19秒前
莴苣完成签到,获得积分10
20秒前
zzz发布了新的文献求助10
21秒前
21秒前
艺玲发布了新的文献求助10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312036
求助须知:如何正确求助?哪些是违规求助? 2944707
关于积分的说明 8521005
捐赠科研通 2620360
什么是DOI,文献DOI怎么找? 1432797
科研通“疑难数据库(出版商)”最低求助积分说明 664762
邀请新用户注册赠送积分活动 650092