Harnessing Deep Learning Methods for Voltage-Gated Ion Channel Drug Discovery

药物发现 计算机科学 深度学习 离子通道 纳米技术 计算生物学 神经科学 人工智能 生物信息学 生物 材料科学 受体 生物化学
作者
Diego López Mateos,B. Harris,Adriana Hernández González,Kush Narang,Vladimir Yarov‐Yarovoy
出处
期刊:Physiology [American Physiological Society]
标识
DOI:10.1152/physiol.00029.2024
摘要

Voltage-gated ion channels (VGICs) are pivotal in regulating electrical activity in excitable cells and are critical pharmaceutical targets for treating many diseases including cardiac arrhythmia and neuropathic pain. Despite their significance, challenges such as achieving target selectivity persist in VGIC drug development. Recent progress in deep learning, particularly diffusion models, has enabled the computational design of protein binders for any clinically relevant protein based solely on its structure. These developments coincide with a surge in experimental structural data for VGICs, providing a rich foundation for computational design efforts. This review explores the recent advancements in computational protein design using deep learning and diffusion methods, focusing on their application in designing protein binders to modulate VGIC activity. We discuss the potential use of these methods to computationally design protein binders targeting different regions of VGICs, including the pore domain, voltage-sensing domains, and interface with auxiliary subunits. We provide a comprehensive overview of the different design scenarios, discuss key structural considerations, and address the practical challenges in developing VGIC-targeting protein binders. By exploring these innovative computational methods, we aim to provide a framework for developing novel strategies that could significantly advance VGIC pharmacology and lead to the discovery of effective and safe therapeutics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aprilapple发布了新的文献求助10
2秒前
可可完成签到,获得积分10
3秒前
3秒前
wjn完成签到,获得积分10
6秒前
gyh完成签到,获得积分10
8秒前
Aprilapple完成签到,获得积分10
8秒前
8秒前
白踏歌发布了新的文献求助10
9秒前
直率香寒完成签到,获得积分10
10秒前
xj完成签到,获得积分10
10秒前
FashionBoy应助可可采纳,获得10
10秒前
fangpiupiu发布了新的文献求助10
11秒前
烟花应助Forest采纳,获得10
11秒前
13秒前
14秒前
恍若隔世完成签到,获得积分20
14秒前
15秒前
lyp7028发布了新的文献求助10
16秒前
jiahao发布了新的文献求助10
17秒前
17秒前
18秒前
19秒前
21秒前
呆呆完成签到,获得积分10
24秒前
ppzy发布了新的文献求助10
25秒前
jiahao完成签到,获得积分10
25秒前
26秒前
1874完成签到 ,获得积分10
29秒前
lu完成签到,获得积分10
30秒前
小王同学发布了新的文献求助10
33秒前
阿掰发布了新的文献求助30
33秒前
CodeCraft应助lddd采纳,获得10
34秒前
lookahead发布了新的文献求助10
34秒前
徐昊完成签到,获得积分10
36秒前
威武吴完成签到,获得积分10
36秒前
Philcc完成签到,获得积分10
38秒前
fzzzzlucy发布了新的文献求助20
41秒前
42秒前
Evangeline993完成签到,获得积分10
43秒前
科目三应助优美的山晴采纳,获得10
43秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304504
求助须知:如何正确求助?哪些是违规求助? 2938464
关于积分的说明 8488809
捐赠科研通 2612923
什么是DOI,文献DOI怎么找? 1427023
科研通“疑难数据库(出版商)”最低求助积分说明 662889
邀请新用户注册赠送积分活动 647385