On the Much‐Improved High‐Voltage Cycling Performance of LiCoO2 by Phase Alteration from O3 to O2 Structure

自行车 材料科学 相(物质) 化学 地理 林业 有机化学
作者
Mingwei Zan,Hongsheng Xie,Sichen Jiao,Kai Jiang,Xuelong Wang,Ruijuan Xiao,Xiqian Yu,Hong Li,Huang Xuejie
出处
期刊:Small science [Wiley]
标识
DOI:10.1002/smsc.202400162
摘要

Lithium cobalt oxide (LiCoO 2 ) is an irreplaceable cathode material for lithium‐ion batteries with high volumetric energy density. The prevailing O 3 phase LiCoO 2 adopts the ABCABC (A, B, and C stand for lattice sites in the close‐packed plane) stacking modes of close‐packed oxygen atoms. Currently, the focus of LiCoO 2 development is application at high voltage (>4.55 V versus Li + /Li) to achieve a high specific capacity (>190 mAh g −1 ). However, cycled with a high cutoff voltage, O 3 –LiCoO 2 suffers from rapid capacity decay. The causes of failure are mostly attributed to the irreversible transitions to H1‐3/O 1 phase after deep delithiation and severe interfacial reactions with electrolytes. In addition to O 3 , LiCoO 2 is also known to crystalize in an O 2 phase with ABAC stacking. Since its discovery, little is known about the high‐voltage behavior of O 2 –LiCoO 2 . Herein, through systematic comparison between electrochemical performances of O 3 and O 2 LiCoO 2 at high voltage, the significantly better stability of O 2 –LiCoO 2 (>4.5 V) than that of O 3 –LiCoO 2 in the same micro‐sized particle morphology is revealed. Combining various characterization techniques and multiscale simulation, the outstanding high‐voltage stability of O 2 –LiCoO 2 is attributed to the high Li diffusivity and ideal mechanical properties. Uniform Li + distribution and balanced internal stress loading may hold the key to improving the high‐voltage performance of LiCoO 2 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
badada完成签到,获得积分10
3秒前
想喝冰美完成签到,获得积分10
5秒前
心有猛虎完成签到,获得积分10
5秒前
6秒前
楚小儿发布了新的文献求助10
6秒前
6秒前
Xxaaa发布了新的文献求助10
8秒前
科研fw完成签到 ,获得积分10
9秒前
蓝天完成签到,获得积分10
10秒前
10秒前
10秒前
L112233发布了新的文献求助10
10秒前
aDou完成签到 ,获得积分10
11秒前
李雷完成签到,获得积分10
11秒前
燕子完成签到,获得积分10
12秒前
tao完成签到,获得积分10
12秒前
幽默胜完成签到,获得积分10
13秒前
韭黄发布了新的文献求助10
13秒前
旧旧完成签到 ,获得积分10
13秒前
xiaoyu完成签到,获得积分10
14秒前
自由凌丝完成签到,获得积分10
14秒前
zho发布了新的文献求助10
14秒前
15秒前
tao发布了新的文献求助10
15秒前
longjiafang完成签到,获得积分10
17秒前
牛黄完成签到 ,获得积分10
17秒前
舅药蛙蛙叫完成签到,获得积分10
17秒前
星辰大海应助韭黄采纳,获得10
19秒前
xiaobai发布了新的文献求助10
20秒前
plant完成签到 ,获得积分10
20秒前
21秒前
Ava应助阿懒采纳,获得10
22秒前
hehuan0520完成签到,获得积分0
22秒前
Yyy完成签到,获得积分10
22秒前
conny完成签到,获得积分10
23秒前
23秒前
程大海完成签到,获得积分10
24秒前
26秒前
ylf完成签到,获得积分10
27秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3709299
求助须知:如何正确求助?哪些是违规求助? 3257385
关于积分的说明 9904613
捐赠科研通 2970266
什么是DOI,文献DOI怎么找? 1629147
邀请新用户注册赠送积分活动 772463
科研通“疑难数据库(出版商)”最低求助积分说明 743818