微塑料
含水层
地下水
环境科学
色散(光学)
导水率
粒子(生态学)
阻力
土壤科学
环境化学
岩土工程
土壤水分
地质学
化学
机械
海洋学
物理
光学
作者
Yaqiang Wei,Yu‐Ling Chen,Xinde Cao,Tian-Chyi Jim Yeh,Qian Zhang,Zaiji Zhan,Yinghao Cui,Hui Li
标识
DOI:10.1021/acs.est.4c05202
摘要
Migration of microplastics (MPs) in soil–groundwater systems plays a pivotal role in determining its concentration in aquifers and future threats to the terrestrial environment, including human health. However, existing models employing an advection–dispersion equation are insufficient to incorporate the holistic mechanism of MP migration. Therefore, to bridge the gap associated with MP migration in soil–groundwater systems, a dispersion–drag force coupled model incorporating a drag force on MPs along with dispersion is developed and validated through existing laboratory and field-scale experiments. The inclusion of the MP dispersion notably increased the global maximum particle velocity (vmaxp) of MPs, resulting in a higher concentration of MPs in the aquifer, which is also established by sensitivity analysis of MP dispersion. Additionally, increasing irrigation flux and irrigation areas significantly accelerates MP migration downward from soil to deep saturated aquifers. Intriguingly, vmaxp of MPs exhibited a nonlinear relationship with MPs' sizes smaller than 20 μm reaching the highest value (=1.64 × 10–5 m/s) at a particle size of 8 μm, while a decreasing trend was identified for particle sizes ranging from 20 to 100 μm because of the hindered effect by porous media and the weaker effect of the drag force. Moreover, distinct behaviors were observed among different plastic types, with poly(vinyl chloride), characterized by the highest density, displaying the lowest vmaxp and minimal flux entering groundwater. Furthermore, the presence of a heterogeneous structure with lower hydraulic conductivity facilitated MP dispersion and promoted their migration in saturated aquifers. The findings shed light on effective strategies to mitigate the impact of MPs in aquifers, contributing valuable insights to the broader scientific fraternity.
科研通智能强力驱动
Strongly Powered by AbleSci AI