Optimal Management Strategy for Salt Adsorption Capacity in Machine Learning-Based Flow-Electrode Capacitive Deionization Process

电容去离子 吸附 电极 过程(计算) 材料科学 电容感应 盐(化学) 计算机科学 工艺工程 电化学 工程类 化学 操作系统 物理化学 有机化学
作者
Sung Il Yu,Junbeom Jeon,Yong-Uk Shin,Hyokwan Bae
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:4 (8): 1937-1947 被引量:2
标识
DOI:10.1021/acsestengg.4c00142
摘要

Flow-electrode capacitive deionization (FCDI) has created a breakthrough toward a more stable desalination performance by adopting a flow-electrode compared to existing capacitive deionization and membrane capacitive deionization as a promising electrochemical water treatment technology. However, the FCDI technology requires investigation of various mechanisms pertaining to flow-electrode materials to achieve system optimization. Further, studies on applying machine learning to the FCDI technology have been scarcely reported. Our study aims to explore optimal algorithms via machine learning for predicting the salt adsorption capacity of FCDI processes and evaluate the feasibility of optimization applications. Concurrently, a comparative analysis was conducted through the performance model indicators of mean absolute error (MAE), mean squared error, and R2 for support vector machine, random forest, and artificial neural network (ANN) algorithms. Herein, we demonstrated that the optimal ANN-based model exhibited the highest predictive performance, achieving R2 and MAE values of 0.996 and 0.21 mg/g, respectively. Additionally, the Shapley additive explanations (SHAP) confirmed a trend in the contribution of influent concentration, aligning closely with the results of statistical analysis. Specifically, the change in voltage of the FCDI process serves as a key factor in determining salt adsorption efficiency. Moreover, a parallel comparison of the Pearson correlation coefficient and SHAP analyses suggests that the impact of voltage entails a nonlinear contribution within the realm of machine learning. Finally, to deploy a machine learning-driven ANN model system, we present multiple factors (e.g., weight of flow-electrodes, influent concentration, and voltages) as a reinforcement learning model for decision-making. This offers valuable insights and guidance for future operations of the FCDI process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ya发布了新的文献求助10
刚刚
刚刚
练得身形似鹤形完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
鹿港猫妖完成签到,获得积分20
3秒前
chen完成签到,获得积分10
3秒前
4秒前
阿湫发布了新的文献求助10
4秒前
4秒前
5秒前
崔悦欣发布了新的文献求助10
5秒前
希望天下0贩的0应助kk子采纳,获得10
6秒前
丰富的不惜完成签到,获得积分10
8秒前
票子发布了新的文献求助10
8秒前
华仔应助魏莱采纳,获得10
8秒前
F123发布了新的文献求助10
9秒前
shen发布了新的文献求助10
10秒前
10秒前
苗觉觉完成签到,获得积分10
11秒前
帕金森完成签到,获得积分10
12秒前
活力的妙芙完成签到,获得积分10
12秒前
赘婿应助疯子魔煞采纳,获得10
13秒前
橙橙橙完成签到,获得积分10
13秒前
13秒前
你好CDY完成签到,获得积分10
14秒前
14秒前
14秒前
万能图书馆应助希尔伯特采纳,获得10
14秒前
我是老大应助123采纳,获得10
15秒前
芒果小鹌鹑完成签到,获得积分10
16秒前
上官若男应助F123采纳,获得10
17秒前
Singularity应助邢文瑞采纳,获得10
18秒前
c123发布了新的文献求助10
19秒前
嘉嘉琦发布了新的文献求助10
20秒前
wanci应助QWDSA采纳,获得10
22秒前
22秒前
愉快静曼发布了新的文献求助10
25秒前
乐乐乐乐乐乐应助科学家采纳,获得10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048