Optimal Management Strategy for Salt Adsorption Capacity in Machine Learning-Based Flow-Electrode Capacitive Deionization Process

电容去离子 吸附 电极 过程(计算) 材料科学 电容感应 盐(化学) 计算机科学 工艺工程 电化学 工程类 化学 操作系统 物理化学 有机化学
作者
Sung Il Yu,Junbeom Jeon,Yong-Uk Shin,Hyokwan Bae
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:4 (8): 1937-1947 被引量:2
标识
DOI:10.1021/acsestengg.4c00142
摘要

Flow-electrode capacitive deionization (FCDI) has created a breakthrough toward a more stable desalination performance by adopting a flow-electrode compared to existing capacitive deionization and membrane capacitive deionization as a promising electrochemical water treatment technology. However, the FCDI technology requires investigation of various mechanisms pertaining to flow-electrode materials to achieve system optimization. Further, studies on applying machine learning to the FCDI technology have been scarcely reported. Our study aims to explore optimal algorithms via machine learning for predicting the salt adsorption capacity of FCDI processes and evaluate the feasibility of optimization applications. Concurrently, a comparative analysis was conducted through the performance model indicators of mean absolute error (MAE), mean squared error, and R2 for support vector machine, random forest, and artificial neural network (ANN) algorithms. Herein, we demonstrated that the optimal ANN-based model exhibited the highest predictive performance, achieving R2 and MAE values of 0.996 and 0.21 mg/g, respectively. Additionally, the Shapley additive explanations (SHAP) confirmed a trend in the contribution of influent concentration, aligning closely with the results of statistical analysis. Specifically, the change in voltage of the FCDI process serves as a key factor in determining salt adsorption efficiency. Moreover, a parallel comparison of the Pearson correlation coefficient and SHAP analyses suggests that the impact of voltage entails a nonlinear contribution within the realm of machine learning. Finally, to deploy a machine learning-driven ANN model system, we present multiple factors (e.g., weight of flow-electrodes, influent concentration, and voltages) as a reinforcement learning model for decision-making. This offers valuable insights and guidance for future operations of the FCDI process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zsgved完成签到,获得积分10
1秒前
hill发布了新的文献求助10
1秒前
1秒前
SS完成签到,获得积分0
3秒前
4秒前
nexus完成签到,获得积分10
5秒前
5秒前
6秒前
自由语兰完成签到,获得积分10
6秒前
无辜的采蓝完成签到,获得积分10
7秒前
欢呼的夏山完成签到,获得积分10
8秒前
轩辕寄风应助科研小白采纳,获得20
8秒前
Augusterny完成签到 ,获得积分10
10秒前
Ava应助吹气球的金毛采纳,获得10
10秒前
11秒前
11秒前
12秒前
12秒前
12秒前
快乐的猪完成签到,获得积分10
12秒前
Zhu完成签到 ,获得积分10
14秒前
y呓语完成签到,获得积分10
14秒前
欣欣子完成签到,获得积分10
14秒前
宋岩完成签到,获得积分10
14秒前
automan发布了新的文献求助10
15秒前
JamesPei应助会会跑跑跑采纳,获得10
15秒前
IAMXC发布了新的文献求助30
16秒前
天天快乐应助WTC采纳,获得10
16秒前
宋岩发布了新的文献求助10
17秒前
PWG发布了新的文献求助10
18秒前
搜集达人应助IAMXC采纳,获得10
22秒前
害羞大碗完成签到,获得积分10
22秒前
23秒前
23秒前
orixero应助赎罪采纳,获得10
25秒前
酷酷小子完成签到 ,获得积分10
25秒前
26秒前
爱听歌的紫菜完成签到,获得积分10
26秒前
张小小完成签到,获得积分10
27秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141624
求助须知:如何正确求助?哪些是违规求助? 2792563
关于积分的说明 7803506
捐赠科研通 2448811
什么是DOI,文献DOI怎么找? 1302925
科研通“疑难数据库(出版商)”最低求助积分说明 626683
版权声明 601240