Optimal Management Strategy for Salt Adsorption Capacity in Machine Learning-Based Flow-Electrode Capacitive Deionization Process

电容去离子 吸附 电极 过程(计算) 材料科学 电容感应 盐(化学) 计算机科学 工艺工程 电化学 工程类 化学 有机化学 物理化学 操作系统
作者
Sung Il Yu,Junbeom Jeon,Yong-Uk Shin,Hyokwan Bae
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:4 (8): 1937-1947 被引量:14
标识
DOI:10.1021/acsestengg.4c00142
摘要

Flow-electrode capacitive deionization (FCDI) has created a breakthrough toward a more stable desalination performance by adopting a flow-electrode compared to existing capacitive deionization and membrane capacitive deionization as a promising electrochemical water treatment technology. However, the FCDI technology requires investigation of various mechanisms pertaining to flow-electrode materials to achieve system optimization. Further, studies on applying machine learning to the FCDI technology have been scarcely reported. Our study aims to explore optimal algorithms via machine learning for predicting the salt adsorption capacity of FCDI processes and evaluate the feasibility of optimization applications. Concurrently, a comparative analysis was conducted through the performance model indicators of mean absolute error (MAE), mean squared error, and R2 for support vector machine, random forest, and artificial neural network (ANN) algorithms. Herein, we demonstrated that the optimal ANN-based model exhibited the highest predictive performance, achieving R2 and MAE values of 0.996 and 0.21 mg/g, respectively. Additionally, the Shapley additive explanations (SHAP) confirmed a trend in the contribution of influent concentration, aligning closely with the results of statistical analysis. Specifically, the change in voltage of the FCDI process serves as a key factor in determining salt adsorption efficiency. Moreover, a parallel comparison of the Pearson correlation coefficient and SHAP analyses suggests that the impact of voltage entails a nonlinear contribution within the realm of machine learning. Finally, to deploy a machine learning-driven ANN model system, we present multiple factors (e.g., weight of flow-electrodes, influent concentration, and voltages) as a reinforcement learning model for decision-making. This offers valuable insights and guidance for future operations of the FCDI process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JamesPei应助含羞草采纳,获得10
1秒前
小鲁发布了新的文献求助10
2秒前
斯文的慕儿完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
Lucas应助Denmark采纳,获得10
3秒前
4秒前
温暖的曼凡关注了科研通微信公众号
4秒前
orixero应助北栀采纳,获得10
4秒前
称心修杰发布了新的文献求助10
4秒前
Annlucy发布了新的文献求助30
5秒前
小马甲应助helloworld采纳,获得10
6秒前
6秒前
JamesPei应助xxy采纳,获得10
7秒前
笨笨的誉发布了新的文献求助10
8秒前
打工人发布了新的文献求助15
8秒前
xyg发布了新的文献求助10
8秒前
8秒前
8秒前
helen完成签到,获得积分10
9秒前
Jane完成签到,获得积分10
9秒前
赘婿应助yeah18采纳,获得10
9秒前
10秒前
10秒前
共享精神应助端庄白易采纳,获得10
10秒前
华仔应助krtzz3采纳,获得10
10秒前
12秒前
含羞草发布了新的文献求助10
12秒前
Shelby发布了新的文献求助30
12秒前
九月完成签到 ,获得积分10
13秒前
橙子完成签到 ,获得积分10
13秒前
15秒前
典雅的绿凝完成签到,获得积分10
15秒前
15秒前
干净的听枫完成签到,获得积分10
16秒前
赘婿应助想摆摊卖烤鱿鱼采纳,获得10
17秒前
17秒前
Annlucy完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641853
求助须知:如何正确求助?哪些是违规求助? 4757522
关于积分的说明 15015246
捐赠科研通 4800349
什么是DOI,文献DOI怎么找? 2565983
邀请新用户注册赠送积分活动 1524113
关于科研通互助平台的介绍 1483788