Optimal Management Strategy for Salt Adsorption Capacity in Machine Learning-Based Flow-Electrode Capacitive Deionization Process

电容去离子 吸附 电极 过程(计算) 材料科学 电容感应 盐(化学) 计算机科学 工艺工程 电化学 工程类 化学 有机化学 物理化学 操作系统
作者
Sung Il Yu,Junbeom Jeon,Yong-Uk Shin,Hyokwan Bae
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:4 (8): 1937-1947 被引量:2
标识
DOI:10.1021/acsestengg.4c00142
摘要

Flow-electrode capacitive deionization (FCDI) has created a breakthrough toward a more stable desalination performance by adopting a flow-electrode compared to existing capacitive deionization and membrane capacitive deionization as a promising electrochemical water treatment technology. However, the FCDI technology requires investigation of various mechanisms pertaining to flow-electrode materials to achieve system optimization. Further, studies on applying machine learning to the FCDI technology have been scarcely reported. Our study aims to explore optimal algorithms via machine learning for predicting the salt adsorption capacity of FCDI processes and evaluate the feasibility of optimization applications. Concurrently, a comparative analysis was conducted through the performance model indicators of mean absolute error (MAE), mean squared error, and R2 for support vector machine, random forest, and artificial neural network (ANN) algorithms. Herein, we demonstrated that the optimal ANN-based model exhibited the highest predictive performance, achieving R2 and MAE values of 0.996 and 0.21 mg/g, respectively. Additionally, the Shapley additive explanations (SHAP) confirmed a trend in the contribution of influent concentration, aligning closely with the results of statistical analysis. Specifically, the change in voltage of the FCDI process serves as a key factor in determining salt adsorption efficiency. Moreover, a parallel comparison of the Pearson correlation coefficient and SHAP analyses suggests that the impact of voltage entails a nonlinear contribution within the realm of machine learning. Finally, to deploy a machine learning-driven ANN model system, we present multiple factors (e.g., weight of flow-electrodes, influent concentration, and voltages) as a reinforcement learning model for decision-making. This offers valuable insights and guidance for future operations of the FCDI process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助infe采纳,获得10
刚刚
王富贵发布了新的文献求助10
刚刚
刚刚
Allen完成签到,获得积分10
2秒前
2秒前
3秒前
Sabrina完成签到,获得积分10
3秒前
老张完成签到 ,获得积分10
3秒前
4秒前
单纯胡萝卜完成签到,获得积分10
5秒前
luo完成签到,获得积分10
5秒前
5秒前
虚幻夜白发布了新的文献求助10
6秒前
6秒前
张涛发布了新的文献求助30
6秒前
6秒前
圆圆发布了新的文献求助10
7秒前
8秒前
玉玉鼠发布了新的文献求助10
8秒前
9秒前
刘洋发布了新的文献求助10
10秒前
10秒前
笨笨西牛发布了新的文献求助10
10秒前
jy完成签到 ,获得积分10
11秒前
to高坚果发布了新的文献求助10
11秒前
passerby发布了新的文献求助10
12秒前
12秒前
pdx666完成签到,获得积分10
14秒前
丘比特应助缪伟采纳,获得10
14秒前
JXY完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
知名不具发布了新的文献求助10
15秒前
赫连烙发布了新的文献求助10
16秒前
笑点低的秋蝶完成签到,获得积分10
17秒前
叮叮当当发布了新的文献求助30
18秒前
18秒前
ying完成签到,获得积分10
18秒前
dopamine发布了新的文献求助10
19秒前
麦乐迪应助圆圆采纳,获得10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577935
求助须知:如何正确求助?哪些是违规求助? 3997037
关于积分的说明 12374100
捐赠科研通 3671042
什么是DOI,文献DOI怎么找? 2023214
邀请新用户注册赠送积分活动 1057205
科研通“疑难数据库(出版商)”最低求助积分说明 944176