已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimal Management Strategy for Salt Adsorption Capacity in Machine Learning-Based Flow-Electrode Capacitive Deionization Process

电容去离子 吸附 电极 过程(计算) 材料科学 电容感应 盐(化学) 计算机科学 工艺工程 电化学 工程类 化学 操作系统 物理化学 有机化学
作者
Sung Il Yu,Junbeom Jeon,Yong-Uk Shin,Hyokwan Bae
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:4 (8): 1937-1947 被引量:14
标识
DOI:10.1021/acsestengg.4c00142
摘要

Flow-electrode capacitive deionization (FCDI) has created a breakthrough toward a more stable desalination performance by adopting a flow-electrode compared to existing capacitive deionization and membrane capacitive deionization as a promising electrochemical water treatment technology. However, the FCDI technology requires investigation of various mechanisms pertaining to flow-electrode materials to achieve system optimization. Further, studies on applying machine learning to the FCDI technology have been scarcely reported. Our study aims to explore optimal algorithms via machine learning for predicting the salt adsorption capacity of FCDI processes and evaluate the feasibility of optimization applications. Concurrently, a comparative analysis was conducted through the performance model indicators of mean absolute error (MAE), mean squared error, and R2 for support vector machine, random forest, and artificial neural network (ANN) algorithms. Herein, we demonstrated that the optimal ANN-based model exhibited the highest predictive performance, achieving R2 and MAE values of 0.996 and 0.21 mg/g, respectively. Additionally, the Shapley additive explanations (SHAP) confirmed a trend in the contribution of influent concentration, aligning closely with the results of statistical analysis. Specifically, the change in voltage of the FCDI process serves as a key factor in determining salt adsorption efficiency. Moreover, a parallel comparison of the Pearson correlation coefficient and SHAP analyses suggests that the impact of voltage entails a nonlinear contribution within the realm of machine learning. Finally, to deploy a machine learning-driven ANN model system, we present multiple factors (e.g., weight of flow-electrodes, influent concentration, and voltages) as a reinforcement learning model for decision-making. This offers valuable insights and guidance for future operations of the FCDI process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正己化人应助LALA采纳,获得10
刚刚
刚刚
1秒前
1秒前
xxfsx应助敏感的翠容采纳,获得10
1秒前
2秒前
Owen应助zhanghezheng采纳,获得10
3秒前
4秒前
明月清风发布了新的文献求助30
4秒前
7秒前
王一完成签到 ,获得积分10
8秒前
嘟嘟完成签到,获得积分10
8秒前
小蘑菇应助白白采纳,获得10
9秒前
Siren发布了新的文献求助20
9秒前
10秒前
sxx发布了新的文献求助10
10秒前
苏su完成签到 ,获得积分10
10秒前
10秒前
一往之前发布了新的文献求助10
11秒前
11秒前
11秒前
小研不咸关注了科研通微信公众号
12秒前
科研通AI6应助蒋飞雪采纳,获得10
13秒前
13秒前
14秒前
pp发布了新的文献求助10
14秒前
atmzpl发布了新的文献求助10
15秒前
七七七七完成签到 ,获得积分10
15秒前
chen完成签到,获得积分10
15秒前
16秒前
JamesPei应助明月清风采纳,获得10
16秒前
17秒前
17秒前
EnjieLin完成签到,获得积分10
18秒前
君寻完成签到 ,获得积分10
18秒前
18秒前
kyle竣完成签到,获得积分10
20秒前
小马甲应助sen123采纳,获得10
20秒前
21秒前
kuankuan发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407145
求助须知:如何正确求助?哪些是违规求助? 4524806
关于积分的说明 14100192
捐赠科研通 4438630
什么是DOI,文献DOI怎么找? 2436417
邀请新用户注册赠送积分活动 1428409
关于科研通互助平台的介绍 1406443