Optimal Management Strategy for Salt Adsorption Capacity in Machine Learning-Based Flow-Electrode Capacitive Deionization Process

电容去离子 吸附 电极 过程(计算) 材料科学 电容感应 盐(化学) 计算机科学 工艺工程 电化学 工程类 化学 有机化学 物理化学 操作系统
作者
Sung Il Yu,Junbeom Jeon,Yong-Uk Shin,Hyokwan Bae
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:4 (8): 1937-1947 被引量:14
标识
DOI:10.1021/acsestengg.4c00142
摘要

Flow-electrode capacitive deionization (FCDI) has created a breakthrough toward a more stable desalination performance by adopting a flow-electrode compared to existing capacitive deionization and membrane capacitive deionization as a promising electrochemical water treatment technology. However, the FCDI technology requires investigation of various mechanisms pertaining to flow-electrode materials to achieve system optimization. Further, studies on applying machine learning to the FCDI technology have been scarcely reported. Our study aims to explore optimal algorithms via machine learning for predicting the salt adsorption capacity of FCDI processes and evaluate the feasibility of optimization applications. Concurrently, a comparative analysis was conducted through the performance model indicators of mean absolute error (MAE), mean squared error, and R2 for support vector machine, random forest, and artificial neural network (ANN) algorithms. Herein, we demonstrated that the optimal ANN-based model exhibited the highest predictive performance, achieving R2 and MAE values of 0.996 and 0.21 mg/g, respectively. Additionally, the Shapley additive explanations (SHAP) confirmed a trend in the contribution of influent concentration, aligning closely with the results of statistical analysis. Specifically, the change in voltage of the FCDI process serves as a key factor in determining salt adsorption efficiency. Moreover, a parallel comparison of the Pearson correlation coefficient and SHAP analyses suggests that the impact of voltage entails a nonlinear contribution within the realm of machine learning. Finally, to deploy a machine learning-driven ANN model system, we present multiple factors (e.g., weight of flow-electrodes, influent concentration, and voltages) as a reinforcement learning model for decision-making. This offers valuable insights and guidance for future operations of the FCDI process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kehe!完成签到 ,获得积分0
刚刚
1秒前
1秒前
英吉利25发布了新的文献求助10
1秒前
Lntano发布了新的文献求助10
2秒前
3秒前
jkdzp完成签到 ,获得积分10
3秒前
我不到啊完成签到,获得积分10
3秒前
FashionBoy应助DreamerOj采纳,获得10
4秒前
比卜不完成签到 ,获得积分10
4秒前
用心若镜2发布了新的文献求助10
5秒前
Meng发布了新的文献求助10
6秒前
Xiaohui_Yu完成签到,获得积分10
6秒前
Li818发布了新的文献求助10
7秒前
郭郭发布了新的文献求助10
8秒前
8秒前
9秒前
shh完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
14秒前
不安的松完成签到 ,获得积分10
14秒前
14秒前
wxy发布了新的文献求助10
16秒前
destiny关注了科研通微信公众号
16秒前
彭于晏应助袅袅采纳,获得10
16秒前
无限青柏发布了新的文献求助10
17秒前
畅快的胡萝卜完成签到,获得积分10
17秒前
shu发布了新的文献求助10
17秒前
上官若男应助llya采纳,获得10
18秒前
DreamerOj发布了新的文献求助10
18秒前
18秒前
英姑应助水123采纳,获得10
19秒前
用心若镜2完成签到,获得积分10
19秒前
桐桐应助money采纳,获得10
19秒前
cxy发布了新的文献求助10
19秒前
theinu完成签到,获得积分10
21秒前
huang完成签到,获得积分10
22秒前
shuiyi发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603799
求助须知:如何正确求助?哪些是违规求助? 4688754
关于积分的说明 14855835
捐赠科研通 4695101
什么是DOI,文献DOI怎么找? 2540987
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814