An agent-based cooperative co-evolutionary framework for optimizing the production planning of energy supply chains under uncertainty scenarios

生产(经济) 供应链 计算机科学 生产计划 能量(信号处理) 环境经济学 风险分析(工程) 生化工程 业务 微观经济学 经济 数学 工程类 营销 统计
作者
Shiyu Chen,Chiye Ma,Wei Wang,Enrico Zio
出处
期刊:International Journal of Production Economics [Elsevier BV]
卷期号:277: 109399-109399
标识
DOI:10.1016/j.ijpe.2024.109399
摘要

Nowadays, energy and power companies compete to get the raw materials and equipment they need on time, as project times lengthen, costs spiral, stock-out continues to plague plans to a decarbonized energy future. The risks reflect the impact of uncertainty and volatility on the resilience of the supply chains. Therefore, there is a need for the enhancement of the production planning in Energy Supply Chains (ESCs), as it enables affordable energy supplies and supports the companies transition to a clean, secure and sustainable energy mix. This study aims to understand the interactive behavior among individuals and optimize their production planning under uncertainty scenarios. In particular, we propose a novel framework to couple an Agent-based Modelling (ABM) and a Co-evolutionary Algorithm (CEA), to realize its capacity to solve a Many-objective Optimization Problem (MaOP) where the profits of multiple agents are concurrently maximized in their interactive transaction processes under normal conditions and uncertain disruption events. For demonstration, we illustrate the proposed approach by considering a five-layer oil and gas ESC model, where uncertainties from multiple sources and the structural dynamics challenge the balance between supply and demand. The results obtained by an integration of a Cooperative Co-evolutionary Particle Swarm Optimizer (CCPSO) algorithm into ABM show the pricing and orders of the target agents are optimized while the loss of ESC resilience is minimized under uncertainty scenarios, proving its capacity of improving the diversity and the convergence, compared to the classic evolutionary algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Victor陈完成签到,获得积分10
刚刚
Bio应助顺利毕业呀采纳,获得30
1秒前
内向翰完成签到,获得积分10
1秒前
1秒前
1秒前
曾哥帅完成签到,获得积分10
2秒前
FOODHUA完成签到,获得积分10
3秒前
小明完成签到,获得积分20
3秒前
vinecho给vinecho的求助进行了留言
3秒前
杨多多发布了新的文献求助10
3秒前
lm完成签到,获得积分10
3秒前
nanjiluotuo11发布了新的文献求助10
4秒前
Paustino完成签到,获得积分10
5秒前
俏皮的匕发布了新的文献求助10
5秒前
6秒前
善学以致用应助阮红亮采纳,获得30
7秒前
7秒前
CipherSage应助博修采纳,获得10
7秒前
8秒前
追寻柚子完成签到,获得积分10
9秒前
戚薇发布了新的文献求助10
9秒前
小马甲应助勤劳翰采纳,获得10
9秒前
9秒前
limh完成签到,获得积分10
10秒前
10秒前
phobeeee完成签到 ,获得积分10
10秒前
自然1111发布了新的文献求助10
10秒前
q1356478314应助田济采纳,获得10
11秒前
胡图图完成签到,获得积分10
11秒前
11秒前
吕方完成签到,获得积分10
11秒前
13秒前
L-g-b完成签到,获得积分10
13秒前
杨多多完成签到,获得积分10
13秒前
LLLLLL完成签到,获得积分10
13秒前
www完成签到,获得积分10
14秒前
lenon发布了新的文献求助10
14秒前
1111发布了新的文献求助10
15秒前
16秒前
机智傀斗完成签到,获得积分10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650