Embedded feature fusion for multi-view multi-label feature selection

特征选择 特征(语言学) 人工智能 模式识别(心理学) 计算机科学 融合 选择(遗传算法) 多标签分类 语言学 哲学
作者
Pingting Hao,Wanfu Gao,Liang Hu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:157: 110888-110888 被引量:22
标识
DOI:10.1016/j.patcog.2024.110888
摘要

With the explosive growth of data sources, multi-view multi-label learning (MVML) has garnered significant attention. However, the task of selecting informative features in MVML becomes more challenging as the dimensionality increase. Existing methods often extract information separately from the consensus part and the complementary part, potentially leading to noise attributed to ambiguous segmentation. In this paper, we propose an embedded feature selection model that combines with two aspects, which are the feature fusion between views and feature enhancement. Firstly, we calculate the adaptive weight of each view based on the local structure relations, and integrate it into one unified feature matrix. Subsequently, the mapping between unified feature matrix and ground-truth label matrix is established. Furthermore, a regularizer for the feature weight of each view is constructed to emphasize its characteristic, respectively. As a result, the relationship for inter-view and intra-view has been simultaneously considered, preserving comprehensive information of features by minimizing the difference between two types of feature weight. Experimental results demonstrate the superior performance of our method in coping with feature selection. • A learning process for emphasizing fusion process and distinctive matrix solving. • The global and local feature weights are combined to improve the performance. • The rationality of objective function is discussed and proved by experiments. • The optimization process is efficient with provable convergence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极行天发布了新的文献求助10
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
白雪阁完成签到,获得积分10
1秒前
1秒前
马小跳完成签到 ,获得积分10
2秒前
2秒前
求助应助余小吉采纳,获得10
3秒前
科研牛人发布了新的文献求助10
3秒前
4秒前
量子星尘发布了新的文献求助30
4秒前
wwy完成签到,获得积分10
4秒前
左丘以云完成签到,获得积分10
4秒前
729完成签到,获得积分10
4秒前
5秒前
Lucas应助FZz采纳,获得10
5秒前
小徐爱絮叨完成签到,获得积分10
5秒前
YIN完成签到 ,获得积分10
5秒前
qcl完成签到,获得积分10
6秒前
6秒前
田様应助追寻的书竹采纳,获得10
6秒前
fuuu完成签到,获得积分10
7秒前
7秒前
李姣完成签到,获得积分10
7秒前
莹崽无敌完成签到,获得积分10
7秒前
我独自升级完成签到,获得积分10
7秒前
7秒前
Guo完成签到,获得积分10
8秒前
丘比特应助Trever采纳,获得10
8秒前
Hello应助追寻的书竹采纳,获得10
8秒前
CodeCraft应助微笑无敌瑶采纳,获得10
9秒前
情怀应助杨洋采纳,获得10
9秒前
9秒前
所所应助wang采纳,获得10
9秒前
9秒前
10秒前
10秒前
chen发布了新的文献求助10
10秒前
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894