亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Embedded feature fusion for multi-view multi-label feature selection

特征选择 特征(语言学) 人工智能 模式识别(心理学) 计算机科学 融合 选择(遗传算法) 多标签分类 哲学 语言学
作者
Pingting Hao,Wanfu Gao,Liang Hu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:157: 110888-110888
标识
DOI:10.1016/j.patcog.2024.110888
摘要

With the explosive growth of data sources, multi-view multi-label learning (MVML) has garnered significant attention. However, the task of selecting informative features in MVML becomes more challenging as the dimensionality increase. Existing methods often extract information separately from the consensus part and the complementary part, potentially leading to noise attributed to ambiguous segmentation. In this paper, we propose an embedded feature selection model that combines with two aspects, which are the feature fusion between views and feature enhancement. Firstly, we calculate the adaptive weight of each view based on the local structure relations, and integrate it into one unified feature matrix. Subsequently, the mapping between unified feature matrix and ground-truth label matrix is established. Furthermore, a regularizer for the feature weight of each view is constructed to emphasize its characteristic, respectively. As a result, the relationship for inter-view and intra-view has been simultaneously considered, preserving comprehensive information of features by minimizing the difference between two types of feature weight. Experimental results demonstrate the superior performance of our method in coping with feature selection. • A learning process for emphasizing fusion process and distinctive matrix solving. • The global and local feature weights are combined to improve the performance. • The rationality of objective function is discussed and proved by experiments. • The optimization process is efficient with provable convergence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尹静涵完成签到 ,获得积分10
1秒前
852应助开心寄松采纳,获得10
47秒前
52秒前
54秒前
xx发布了新的文献求助10
55秒前
量子星尘发布了新的文献求助10
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
cc应助科研通管家采纳,获得10
1分钟前
cc应助科研通管家采纳,获得10
1分钟前
1分钟前
关我屁事完成签到 ,获得积分10
1分钟前
开心寄松发布了新的文献求助10
1分钟前
杆杆完成签到 ,获得积分10
1分钟前
温wen完成签到,获得积分10
1分钟前
搜集达人应助xx采纳,获得10
1分钟前
明理梦竹完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
123123完成签到 ,获得积分10
2分钟前
魁梧的盼望完成签到 ,获得积分10
2分钟前
123完成签到 ,获得积分10
2分钟前
周冯雪完成签到 ,获得积分10
2分钟前
小张完成签到 ,获得积分10
2分钟前
小马甲应助舒适路人采纳,获得10
3分钟前
cc应助科研通管家采纳,获得10
3分钟前
3分钟前
云霞完成签到 ,获得积分10
3分钟前
xx发布了新的文献求助10
3分钟前
SciGPT应助开心寄松采纳,获得10
3分钟前
3分钟前
舒适路人发布了新的文献求助10
3分钟前
山猫大王完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
zero完成签到,获得积分10
3分钟前
3分钟前
3分钟前
610完成签到 ,获得积分10
3分钟前
平常馒头完成签到 ,获得积分10
3分钟前
深情安青应助yyy采纳,获得10
4分钟前
从容的从寒完成签到,获得积分10
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960063
求助须知:如何正确求助?哪些是违规求助? 3506261
关于积分的说明 11128577
捐赠科研通 3238254
什么是DOI,文献DOI怎么找? 1789645
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056