Embedded feature fusion for multi-view multi-label feature selection

特征选择 特征(语言学) 人工智能 模式识别(心理学) 计算机科学 融合 选择(遗传算法) 多标签分类 哲学 语言学
作者
Pingting Hao,Wanfu Gao,Liang Hu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:157: 110888-110888
标识
DOI:10.1016/j.patcog.2024.110888
摘要

With the explosive growth of data sources, multi-view multi-label learning (MVML) has garnered significant attention. However, the task of selecting informative features in MVML becomes more challenging as the dimensionality increase. Existing methods often extract information separately from the consensus part and the complementary part, potentially leading to noise attributed to ambiguous segmentation. In this paper, we propose an embedded feature selection model that combines with two aspects, which are the feature fusion between views and feature enhancement. Firstly, we calculate the adaptive weight of each view based on the local structure relations, and integrate it into one unified feature matrix. Subsequently, the mapping between unified feature matrix and ground-truth label matrix is established. Furthermore, a regularizer for the feature weight of each view is constructed to emphasize its characteristic, respectively. As a result, the relationship for inter-view and intra-view has been simultaneously considered, preserving comprehensive information of features by minimizing the difference between two types of feature weight. Experimental results demonstrate the superior performance of our method in coping with feature selection. • A learning process for emphasizing fusion process and distinctive matrix solving. • The global and local feature weights are combined to improve the performance. • The rationality of objective function is discussed and proved by experiments. • The optimization process is efficient with provable convergence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuci发布了新的文献求助10
1秒前
1秒前
852应助852采纳,获得10
1秒前
2秒前
何哈哈哈完成签到,获得积分20
2秒前
3秒前
上官若男应助一招将死你采纳,获得10
4秒前
ghn完成签到,获得积分10
5秒前
我是好好学习完成签到,获得积分10
5秒前
沸点给沸点的求助进行了留言
6秒前
6秒前
跳跃野狼完成签到,获得积分10
7秒前
7秒前
yumeng完成签到 ,获得积分10
7秒前
大个应助唐帅采纳,获得10
7秒前
啦啦啦发布了新的文献求助10
8秒前
9秒前
124完成签到,获得积分10
10秒前
yuci完成签到,获得积分10
11秒前
田様应助抽空看星星采纳,获得10
12秒前
852发布了新的文献求助10
13秒前
14秒前
15秒前
独特星月完成签到,获得积分10
15秒前
1257应助感动的听寒采纳,获得10
15秒前
ssss完成签到,获得积分20
17秒前
江汛完成签到,获得积分10
18秒前
18秒前
19秒前
无花果应助Q123ba叭采纳,获得10
19秒前
ssss发布了新的文献求助30
20秒前
慈祥的寒烟完成签到,获得积分20
23秒前
23秒前
俭朴的跳跳糖完成签到 ,获得积分10
23秒前
23秒前
24秒前
24秒前
香蕉觅云应助啦啦啦采纳,获得10
25秒前
唐帅发布了新的文献求助10
25秒前
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136624
求助须知:如何正确求助?哪些是违规求助? 2787645
关于积分的说明 7782625
捐赠科研通 2443718
什么是DOI,文献DOI怎么找? 1299386
科研通“疑难数据库(出版商)”最低求助积分说明 625429
版权声明 600954