Embedded feature fusion for multi-view multi-label feature selection

特征选择 特征(语言学) 人工智能 模式识别(心理学) 计算机科学 融合 选择(遗传算法) 多标签分类 语言学 哲学
作者
Pingting Hao,Wanfu Gao,Liang Hu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:157: 110888-110888 被引量:22
标识
DOI:10.1016/j.patcog.2024.110888
摘要

With the explosive growth of data sources, multi-view multi-label learning (MVML) has garnered significant attention. However, the task of selecting informative features in MVML becomes more challenging as the dimensionality increase. Existing methods often extract information separately from the consensus part and the complementary part, potentially leading to noise attributed to ambiguous segmentation. In this paper, we propose an embedded feature selection model that combines with two aspects, which are the feature fusion between views and feature enhancement. Firstly, we calculate the adaptive weight of each view based on the local structure relations, and integrate it into one unified feature matrix. Subsequently, the mapping between unified feature matrix and ground-truth label matrix is established. Furthermore, a regularizer for the feature weight of each view is constructed to emphasize its characteristic, respectively. As a result, the relationship for inter-view and intra-view has been simultaneously considered, preserving comprehensive information of features by minimizing the difference between two types of feature weight. Experimental results demonstrate the superior performance of our method in coping with feature selection. • A learning process for emphasizing fusion process and distinctive matrix solving. • The global and local feature weights are combined to improve the performance. • The rationality of objective function is discussed and proved by experiments. • The optimization process is efficient with provable convergence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
YXX发布了新的文献求助10
2秒前
2秒前
2秒前
敏敏完成签到,获得积分20
3秒前
小小怪发布了新的文献求助10
3秒前
3秒前
搜集达人应助八月十采纳,获得10
5秒前
6秒前
危机的丹雪完成签到,获得积分10
6秒前
6秒前
6秒前
隐形曼青应助仙人掌采纳,获得10
6秒前
6秒前
HHMTT完成签到,获得积分10
6秒前
科研通AI6应助sunyanghu369采纳,获得10
7秒前
qrwyqjbsd应助刘世昇采纳,获得10
8秒前
8秒前
傲娇的凡白关注了科研通微信公众号
8秒前
8秒前
田様应助lulu采纳,获得10
8秒前
8秒前
文艺迎夏完成签到,获得积分10
8秒前
9秒前
Wm200149发布了新的文献求助10
9秒前
9秒前
阿汐发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
10秒前
阿晓晓完成签到,获得积分10
11秒前
卡卡西发布了新的文献求助10
11秒前
ceeray23应助复杂的夜香采纳,获得10
12秒前
KY应助满满采纳,获得10
12秒前
科研小白发布了新的文献求助10
12秒前
zxzxzx发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551982
求助须知:如何正确求助?哪些是违规求助? 4636809
关于积分的说明 14645565
捐赠科研通 4578578
什么是DOI,文献DOI怎么找? 2511030
邀请新用户注册赠送积分活动 1486209
关于科研通互助平台的介绍 1457502