膜
小提琴手
离子
电解质
离子键合
材料科学
聚合物
电荷密度
化学物理
聚电解质
化学工程
纳米技术
化学
物理化学
有机化学
电极
物理
生物化学
工程类
复合材料
量子力学
作者
Xiaohui Liu,Zhiyong Wang,Qixiang Zhang,Dandan Lei,Xiaodong Li,Zhen Zhang,Xinliang Feng
标识
DOI:10.1002/anie.202409349
摘要
Two‐dimensional polymers (2DPs) and their layer‐stacked 2D covalent organic frameworks (2D COFs) membranes hold great potential for harvesting sustainable osmotic energy. The nascent research has yet to simultaneously achieve high ionic flux and selectivity, primarily due to inefficient ion transport dynamics. This is directly related to ultrasmall pore size (<3 nm), much smaller than the duple Debye length in the diluted electrolyte (6~20 nm), as well as low charge density (<4.5 mC m‐2). Here, we introduce a π‐conjugated viologen‐based 2DP (V2DP) membrane possessing a large pore size of 4.5 nm, strategically enhancing the overlapping of the electric double layer, coupled with an exceptional positive surface charge density (~6 mC m‐2). These characteristics enable the membrane to facilitate high anion flux while maintaining ideal selectivity. Notably, V2DP membranes realize an impressive current density of 5.5×103 A m‐2, surpassing previously nanofluidic membranes. In practical application scenario involving the mixing of artificial seawater and river water, the V2DP membranes exhibit a considerable ion transference number of 0.70 towards Cl‐, contributing to an outstanding power density of ~55 W m‐2. Theoretical calculations reveal that the large quantity of anion transport sites act as binding sites evenly located in the positively charged N‐containing pyridine rings.
科研通智能强力驱动
Strongly Powered by AbleSci AI